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ABSTRACT 

Compressible multiphase flow can be observed in numerous applications. The flow regimes 

in these applications are either gas-solid or gas-liquid. These flows often feature either rigid (i.e. 

solid) or deformable (i.e. droplet or bubble) particles and develop complex dynamics as particles 

interact with flow features such as shock waves. These shock-particle interactions introduce unique 

challenges for numerical simulation. This thesis will focus on the development and application of 

numerical methods for the prediction of shock-particle interaction in both gas-solid and gas-liquid 

regimes. 

First, the simulation of a shock wave impacting a particle cloud is investigated following Ref. 

[1] to replicate the canonical multiphase shock tube problem of Wagner et al.[2], [3] experiments. 

This study is motivated by a lack of knowledge in the dense gas particle regime due to the inherent 

difficulties encountered in quantitative measurement of flow properties in this regime. Wagner et 

al.[2] pioneered an experiment to isolate the flow behavior involved, using a multiphase shock 

tube. However, the highly unsteady flow behavior inside the particle curtain and the wake behind 

that is still uncharacterized. This dissertation aims to study this canonical problem to quantify flow 

unsteadiness and velocity fluctuations using particle-resolved direct numerical simulation (PR-

DNS) by solving the compressible full Navier-Stokes equations coupled with an extended 

Immersed Boundary Method (IBM) for compressible flow, in the Parallel Adaptive Wavelet-

Collocation Method (PAWCM) framework. This investigation reveals the sources of unsteadiness 

and importance of fluctuating field statistics such as kinetic energy and Reynolds stress terms. 

Secondly, we focus on development of a flow solver to investigate shock-particle interaction 

in gas-liquid flows with surface tension effects. The motivation for this study is to gain a deeper 

understanding of the process of fuel atomization in a supersonic cross flow of a supersonic 
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combustor under the startup conditions. Simulating interface dynamics and surface tension effect 

during shock-particle interactions in compressible gas-liquid flows is extremely challenging and 

requires robust numerical methods that can handle discontinuities caused by both material 

interfaces and shocks. In order to simulate these dynamics, a solver is developed in PAWCM based 

on a five-equation interface-capturing model and an existing shock capturing scheme. An interface 

sharpening scheme is developed for PAWCM to counter the numerical diffusion induced by the 

shock-capturing scheme, and to maintain the immiscibility condition at the material interface. The 

capillary force is implemented using a continuous surface approach. Capability of the flow solver 

is demonstrated by several one and two dimensional benchmark problems. 

Finally, a shock-capturing two-fluid scheme is developed to further quantify the flow features 

obtained by PR-DNS results via solving the phase-averaged governing equations. This is 

developed based on an extension of the latest version of the Advection Upstream Splitting Method 

(AUSM), called the all-speed simple low-dissipation AUSM (SLAU) scheme. The scheme 

features low dissipation without any tunable parameters in low Mach number regimes while 

maintaining the robustness of AUSM-family fluxes at high Mach numbers with a very simple 

formulation. This has been tested on benchmark problems and was compared with the two-phase 

AUSM+ and AUSM+-up schemes. 

References 

[1] J. D. Regele, J. Rabinovitch, T. Colonius, and G. Blanquart, “Unsteady effects in dense, 
high speed, particle laden flows,” Int. J. Multiph. Flow, vol. 61, no. May, pp. 1–13, 2014. 

[2] J. L. Wagner et al., “A multiphase shock tube for shock wave interactions with dense 
particle fields,” Exp. Fluids, vol. 52, no. 6, pp. 1507–1517, 2012. 

[3] J. L. Wagner et al., “Interaction of a planar shock with a dense field of particles,” in AIP 
Conference Proceedings, 2012, vol. 1426, pp. 1655–1658.
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CHAPTER 1.   INTRODUCTION 

Compressible multiphase flows with shock-particle interaction are observed in many 

environmental and industrial applications such as volcanic eruptions, supernovae, multiphase 

explosions, nuclear reactors and high-speed propulsion systems [1]–[3]. These flows can be 

categorized as existing in either gas-solid or gas-liquid regimes. Experimental studies of these 

flows are difficult, because the velocities, pressures, and temperatures at which these flows occur 

are very high, making experiments hazardous and expensive [4]. This makes modeling and 

simulation of these flows an attractive alternative to experimental approaches. In these multiphase 

flow regimes, due to the presence of compressible flow features such as shock waves, expansion 

waves and contact discontinuities, the interactions between the phases are more complicated than 

those that occur in incompressible flows. These features introduce unique challenges for numerical 

simulations. Thus, the primary purpose of this work is to develop and apply suitable numerical 

methods for prediction of shock-particle interaction in both the gas-solid and gas-liquid regimes 

at the microscale, where the details of interaction on the scale of particle and shock are well 

resolved. From there, an attempt is made to develop a mesoscale two-fluid model. 

1.1 Microscale study of shock-particle interaction in compressible gas-solid flows 

The interaction between shock waves and particles in gas-solid flows has been studied in two 

setups. First, the shock interaction with an isolated particle and second the shock interaction with 

a cloud of particles.  

The shock-single particle interaction in the gas-solid flow has been extensively studied over 

the last two decades [5]–[11]. Igra and Takayama [12] performed shock tube experiments and 

reported that the unsteady drag experienced by a particle affected by a shock is significantly larger 

than that obtained from similar steady flow drag model. Loth [13] investigated the effect of 
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compressibility on the drag experienced by a particle and showed that the drag is dominated by 

compressibility at high Reynolds numbers. Efforts have been made to create a proper model for 

the unsteady drag force in shock-single-particle flow [3], [6], [14], [15].  

In typical applications, however, shock waves interact with a cloud of particles. The model 

developed for a shock single particle interaction is suitable for the study of shock-particle 

interaction in the dilute gas-solid flow regimes where solid phase volume fraction, 𝛼௦ is less than 

0.01  [16]–[23]. However, these models are invalid for flows where the solid volume fraction is 

high such as the dense regime (0.01 ≤  𝛼௦  ≤  0.5) and granular regime (𝛼௦ ≫  0.5). 

Computational modeling has also shown the ability to capture the gas–solid flow physics in the 

granular regime. For instance, using the continuum mixture theory developed by Baer and 

Nunziato [24], Baer [25] accurately modeled the normal shock impingement studies of Sheffield 

et al. [26], [27]. However, these theories also become invalid for flows in the intermediate (dense) 

regime.   

To gain insight into the complicated phenomena associated with this flow regime, an 

experiment was conducted by Wagner et al.[28] to develop quantitative measurements of shock-

particle cloud interaction in the compressible dense regime. This was accomplished by driving a 

planar shock wave into a dense particle cloud having a volume fraction of 𝛼௦ = 0.2 and measuring 

the resulting interaction dynamics with high-speed Schlieren imaging and fast-response pressure 

sensors. However, due to the opaque nature of the particles, observation of flow features at the 

particle scale was not possible. Therefore, numerical simulations must be used in order to fully 

characterize the flow [4]. Ling et al. [3] attempt to provide a physical interpretation of the 

experimental data through a volume-averaged point-particle model in mesoscale using new one-

dimensional particle drag models. The numerical results show that the physics in the interaction 
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between a shock wave with a dense gas-particle cloud is markedly different from that with a dilute 

mixture and  that the dense particle volume fractions lead to a significant increase in interphase 

momentum transfer compared to the standard drag law (e.g., Clift and Gauvin [29]). Moreover, 

the dense particle curtain was reported to prolong unsteadiness by time scales several orders of 

magnitude [30]–[32] in comparison with single particle impacted under similar flow conditions 

[9], [33], [34]. 

Regele et al. [1] were also able to capture the interaction unsteadiness, through a microscale 

Euler simulation. They show that after the shock wave impacts the particle cloud, strong unsteady 

effects and significant velocity fluctuations arise inside the cloud and in the wake immediately 

behind it.  However, the sources of this strong unsteadiness and the development of the fluctuating 

field statistics is not clear, as of yet. This work attempts to further quantify the flow dynamics in 

this canonical problem by quantification of the flow unsteadiness and fluctuating field statistics 

using particle resolved direct numerical simulation of the Navier-Stokes equations.  

1.2 Microscale study of shock particle interaction in compressible gas-liquid flows  

 In most applications of compressible gas-liquid flows, shock waves interact with deformable 

particle such as liquid droplets or bubbles [35]–[39]. These interactions can be observed in 

supersonic combustors, such as scramjets under startup conditions or in underwater 

explosions[40]. Due to the challenges of studying these flows experimentally, a numerical 

approach is necessary to simulate compressible gas-liquid flows under the influence of surface 

tension forces. In this interaction the material interface deforms and interacts with the shock waves, 

with surface tension forces playing an important role in maintaining the interface. The interaction 

between the shock wave and deformable interface increases the difficulty in utilizing a numerical 
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method [41]. A proper methodology requires treatment of the interface dynamics between the two 

phases. This treatment can be categorized as a sharp interface method or diffused interface method. 

In a sharp interface method, the interface is kept sharp via explicit representation and is 

tracked in a discontinuous way. However, there are several different sharp interface methods such 

as front tracking, Arbitrary Lagrangian Eulerian (ALE) method and the level set method. The front 

tracking method [42]–[45] separately tracks the interface (front) and creates modification to the 

cells where the interface lies to account for the discontinuity. This modification requires special 

treatment to maintain numerical stability. ALE methods [46]–[48] require using an unstructured 

mesh and a re-meshing algorithm to deform the mesh with the interface. The level set method 

[49]–[52] defines a series of ghost cells near the interface that includes the fluid mixture. The 

immiscibility condition can be maintained by a level set re-initialization technique [53].  

An alternative approach is a diffused interface method [54]–[56]. The concept behind the 

method is similar to a shock capturing scheme and can easily handle interface deformation on fixed 

or adaptive Cartesian grids. This method adds an advection equation for the volume fraction to 

capture the interface and is simple to implement in multiple dimensions. However, the main 

drawback of the method is numerical diffusion of the interface. Depending on the amount of 

numerical viscosity and the dissipation effect introduced by the shock capturing scheme, the 

interface can become overly diffused. In simulations of shock-interface interaction, this can 

introduce a significant error if strong shocks are present, or the density ratio of the two phases is 

large.  

To counter numerical diffusion of the material interface there are several methods such as the 

Weighted Essentially Non-Oscillatory (WENO) [41], [57]  or the Localized Artificial Diffusivity 

(LAD) scheme [40], [58]–[60]. These are high-order reconstruction schemes that decrease the 
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numerical diffusion and help to accurately capture interface dynamics. However, these methods 

do not satisfy the total variation diminishing (TVD) criteria and introduce spurious oscillation 

across the material interface [41]. Thus, the curvature calculation becomes problematic when 

surface tension effects are incorporated in the solver. An alternative approach is the interface 

steepening technique developed by Shukla et. al. [61] that has been successful in countering the 

numerical diffusion of a material interface when coupled with TVD special reconstruction. This 

scheme successfully sharpens the interface during shock-droplet interactions in the presence of a 

high density ratio. This method is based on implementing the compression step in the pseudo time 

step. Further development of this method with a nonlinear-preconditioning and incorporating in 

the physical time step is performed in Ref. [62], [63].  

While compressible gas-liquid flow has been studied numerically in the past [64]–[69] , 

surface tension  has often been neglected. These studies have mostly focused on the early stages 

of shock interaction with the interface where surface tension effect does not play an important role 

[70], [71] . On the other hand, the existing compressible models, which include surface tension 

effects, have mostly focused on low Mach numbers, for which the compressible effect is not very 

important, such as cavitation or evaporation. There are only some recent studies on incorporation 

of surface tension effect in compressible gas-liquid flows solver  [71]–[75].  In these studies the 

surface tension force has been incorporated in either the conservative form [75] or in the non-

conservative form [71]–[74]. The non-conservative form has been more popular as the surface 

curvature, on which the surface tension is derived, can be controlled easier.  

In this work, we will focus on developing a compressible gas-liquid solver based on the 

diffused interface method coupled with the interface steepening scheme to capture the interface 
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dynamics and include surface tension effects based on the non-conservative continuum surface 

force. 

1.3 A mesoscale compressible two-fluid model  

The focus so far was on the development and application of numerical simulation to capture 

the complex fluid dynamics involved in the shock-particle interactions. However, in most 

engineering applications the computational fluid dynamics study occurs at mesoscale. Thus the 

next step is to create a model to capture the interaction of shock wave with a particle laden flow in 

mesoscale based on the results obtained at microscale. Toward this goal, a two-fluid shock and 

interface capturing scheme is required to solve the phase averaged governing equations. 

The finite volume Advection Upstream Splitting Method (AUSM), originally developed by 

Liou and Steffen [76], and variant of the AUSM-family schemes are known to be excellent at 

shock and interface capturing while remaining computationally inexpensive and not requiring 

characteristic analysis. This scheme has been employed successfully by several authors to simulate 

multiphase flow in different test cases[39], [77], [78]. This scheme has been extended to all-speeds 

that can be used for low to high Mach number flows [79]. However, these schemes include at least 

one problem-dependent parameter, such as a cut-off Mach number [80]. This parameter should be 

a very small, but non-zero, for very low Mach number flows. This approach can be problematic 

since there is no standard method to define the cut-off Mach number, especially when no uniform 

flow is present [81].  

Recently, a new, simple low-dissipation numerical flux function of the AUSM-family has 

been developed for all speeds, called the simple low-dissipation AUSM (SLAU) [82], [83]. In 

contrast with previous all-speed schemes, the simple low-dissipation AUSM features low 

dissipation without any tunable parameters in a low Mach number regime while maintaining the 
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robustness of the AUSM-family fluxes against shock-induced anomalies at high Mach numbers 

(e.g., carbuncle phenomena). Furthermore, the simple low-dissipation AUSM has a simpler 

formulation than other all-speed schemes [83]–[85]. The advantage of the SLAU scheme has 

motivated us to extend this scheme to two-phase application. Thus, in this dissertation we develop 

a two-phase and simple low-dissipation AUSM-family (TSLAU) scheme which is free from 

reference parameters. 

1.4 Thesis organization 

This thesis outlines the development and application of numerical methods for the 

compressible multiphase flow in the gas-solid and gas-liquid regimes. Chapter 2 is a manuscript 

in preparation for submission to the International Journal of Multiphase Flow (IJMF). This chapter 

presents the governing equations for particle resolved direct numerical simulation of a gas-solid 

flow including compressible Navier-Stokes equations and a compressible immersed boundary 

method to account for particles. In this chapter, several problems are investigated. The problem of 

shock interaction with a transverse array of particles is studied to reveal the effect of the wave-

wave and wave-wake interaction on introducing unsteadiness. Then, the simulation of a multiphase 

shock tube of Wagner et al.[28] and Regele et al. [1] is performed to investigate and quantify flow 

unsteadiness in a shock-particle cloud interaction. The vorticity equation budget is calculated to 

provide insight into the sources of unsteadiness in the particle cloud and the wake behind it. Phasic 

Favre averaging statistics were calculated to perform detailed analysis of the importance of 

velocity fluctuations and kinetic energy in the fluctuating field which arise from the strong 

unsteadiness. An analogous simulation and analysis is presented for the same particle cloud 

impacted by a gradually induced flow with a compression wave to assesses the importance of 

impulsive effect of shock by comparison of the two cases.  
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Chapter 3 is a paper on the development of a flow solver for particle resolved direct numerical 

simulation of compressible gas-liquid flows. In this chapter the development of a five-equation 

interface-capturing scheme along with the interface compression scheme to account for the 

immiscibility condition is explained. The implementation of the surface tension force based on the 

continuum surface force and curvature calculation are described. Then some results demonstrating 

the method’s capabilities are presented. 

Chapter 4 is a paper on the development of a finite volume, parameter free, two-phase and 

low dissipation AUSM-family (TSLAU) scheme. This includes the presentation of the system of 

equations for a single-pressure two-fluid model along with the detailed explanation of the 

extension of this scheme based on the single phase all speed SLAU scheme. Then the details about 

the temporal discretization, source terms, and equations of state and primitive variable deduction 

procedures are explained. The method’s capabilities are evaluated using a well-known benchmark 

problem in comparison with the two-phase AUSM+, two phase AUSM+-up.  
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2. CHAPTER 2.   INVESTIGATION AND QUANTIFICATION OF FLOW UNSTEADINESS 

IN SHOCK-PARTICLE CLOUD INTERACTION 

 

A paper in preparation for international journal of multiphase flow 

Zahra Hosseinzadeh-Nik1, Shankar Subramaniam2, Jonathan D. Regele3 

 

Abstract 

This work aims to study the interaction of a shock wave with a cloud of particles to quantify 

flow unsteadiness and velocity fluctuations using particle-resolved direct numerical simulation 

(PR-DNS). Three cases are studied, with each case revealing one aspect of the intricate flow 

phenomena involved in this interaction. The unsteady interaction of a shock wave with a transverse 

array of particles reveals the origin of unsteadiness under the effect of mutual wave-wave and 

wave-wake interactions between the particles. In the second case, the interaction of a shock with 

a particle cloud is studied, with a focus on the interaction of the complex wave system with the 

vortical structure. A budget analysis of the vorticity equation reveals the sources of strong 

unsteadiness in the particle cloud. A detailed analysis of the velocity fluctuation and kinetic energy 

in the fluctuating motion is performed to ascertain the importance of the velocity fluctuations that 

arise from the strong unsteadiness. An analogous analysis is presented, in the third case, for a 

gradually induced flow on the same particle cloud along with a comparison to the shock induced 

case to assess the impulsive effect of shock on intensity of the fluctuating field statistics. 

                                                 
1 PhD candidate, Department of Aerospace Engineering and Mechanical Engineering, Iowa State University. 
2 Professor, Department of Mechanical Engineering, Iowa State University. 
3 Assistant Professor, Department of Aerospace Engineering, Iowa State University. 
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2.1 Introduction 

The interaction between shock waves and particles is an important phenomenon in 

compressible particle-laden flows [1]–[5]. When a shock wave propagates around a particle a 

complex wave system including regular and irregular shock-wave reflection and diffraction is 

established [6]–[8].  

Shock interaction with a single isolated particle has been studied extensively [6], [7], [9], [10]. 

In many typical applications, shock waves interact with a cloud or dispersion of particles [8], [11], 

[12]. In these processes, depending on the solid phase volume fraction, 𝛼௦, the flow topology 

ranges from a very dense gas-solid flow (𝛼௦  ≥  0.5) during the propagation of the shock wave 

within the particle cloud to a dilute gas-solid flow (𝛼௦   <  0.01), at distances far from the source. 

Between these two extremes (0.01 <  𝛼௦   <  0.5), there exists a dense gas-solid flow regime 

during early interaction times. A detailed discussion of these three regimes is given by Zhang et 

al. [13]. 

The modeling techniques developed for an isolated particle are suitable for dilute particle-

laden flows (i.e., with negligible particle volume fraction), but cannot be applied directly in dense 

particle-laden flows (i.e., with finite particle volume fraction) [8]. With increasing particle volume 

fraction, the existence of neighboring particles further complicates the interaction between shock 

waves and particles. In these situations, inter-particle interactions, interactions between particles 

and reflected or diffracted waves from neighboring particles, and interactions between particles 

and the wakes of neighboring particles become important. 

Much experimental work in the dilute regime has been conducted[14]–[16]. Simulations and 

theoretical analysis have been applied to predict shock attenuation in this regime[17], [18]. 

Computational modeling has also shown the capability to capture the gas–solid flow physics in the 
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very dense regime. For instance, Baer and Nunziato [19] use continuum mixture theory to 

accurately model the normal shock impingement. However, there is a substantial knowledge gap 

in gas–solid flows with intermediate particle volume fractions that are roughly equivalent to those 

found in dense gas–solid flow. Thus, detailed knowledge of the interactions that occur in dense 

gas–solid flow is required [5], [8], [20], [21]. 

On the other hand, shock–particle interaction is strongly time-dependent[4], [22]. The particle 

is subjected to very strong gas acceleration as the shock wave passes over it [21], [23]. Sun et al. 

[9] and Bredin and Skews [24] presented time-resolved measurements of the force on a stationary 

particle subjected to a shock wave. The instantaneous force on the particle under such highly 

unsteady conditions was shown to be much larger than the corresponding quasi-steady force that 

would have resulted if the change from the quiescent pre-shock state to the uniform post-shock 

state were to happen very slowly [4], [8]. In particular, the instantaneous force during the passage 

of the shock wave is reported to be an order of magnitude larger than the steady drag force resulting 

from the post-shock gas velocity [5]. This clearly highlights the importance of unsteady effects in 

shock–particle interactions. 

The unsteady effects are usually neglected even if strong interactions between compressible 

flow features and particles are to be expected [13], [25], [26]. However, in some applications, such 

as in detonations, the large unsteady forces exerted on the particle can cause deformation and 

breakage. Similarly, intense unsteady heating can cause melting or initiate chemical reactions. 

There are a limited number of papers that address the influence of unsteady forces on the motion 

of particles interacting with a shock wave, such as Parmar et al. [10] and Forney et al. [2].  Ling et 

al. [5], [8] also proposed a model that includes unsteady contributions to force and heating. They 

have also developed a one-dimensional phase-averaged point-particle model including the 
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unsteady momentum coupling forces to reproduce the experimental results of Wagner et al.[21]. 

This result highlights the importance of unsteadiness in the shock-particle interaction in the dense 

gas-solid regime.  

Although this model is promising, it is appropriate to question whether all aspects of the 

experimental flow can be captured using a one-dimensional model that only includes the unsteady 

momentum coupling forces. Regele et al. [27] performed 2D simulations using the Euler equations 

and observed high flow unsteadiness. They compared the results with a 1D model and indicated 

that the 1D model can characterize the overall steady-state flow behavior but fails to capture 

unsteady behavior due to neglect of unsteady terms such as Reynolds stress. There is also evidence 

that the Reynolds stress can be important in simple homogeneous incompressible flow in the dense 

particle-laden regime [28], [29]. In these results, the inter-particle interactions, the interactions 

between particles and the wakes of neighboring particles play a role. However, the interactions 

between particles and the reflected or diffracted waves from neighboring particles is absent. Even 

in the absence of shocks, Mehrabadi et al. [28] showed that the Reynolds stress term is non-

negligible and fluctuations in the gas-phase velocity can contribute significantly to the total gas-

phase kinetic energy. Furthermore, the authors denote local particle-scale gas-phase velocity 

fluctuations generated by the presence of particles, larger than the Kolmogorov length scale, as 

pseudo-turbulent velocity fluctuations. They refer to the kinetic energy associated with these 

fluctuations as the pseudo-turbulent kinetic energy (PTKE) because these fluctuations can be 

generated even in laminar gas-solid flow. They show that the PTKE in the fluctuating motion can 

be as high as the kinetic energy in the mean flow, especially for systems with higher solid volume 

fractions. The ratio of PTKE to mean kinetic energy increases with the solid volume fraction and 

decreases with the mean slip Reynolds number. This provides evidence that the pseudo-turbulent 
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effects play an important role in the dense gas-solid regime. Sun et al. [29] provided evidence that 

the velocity fluctuations can also result in temperature fluctuations. Regele et al. [27] showed that 

velocity fluctuations from shock-particle interactions are more significant and can be on the same 

order as the mean velocity. However, since the calculations were performed with the Euler 

equations, additional studies including viscous and thermal diffusion are required to more 

accurately quantify the magnitude of the velocity fluctuations. These observations along with the 

experimental results of Wagner et al.[21] indicate that quantification of the unsteadiness and gas-

phase velocity fluctuation in the shock-particle cloud interaction is necessary to better understand 

the flow interaction.  

The overarching goal of this paper is to quantify the flow unsteadiness and velocity 

fluctuations induced by shock waves interacting with particle-clouds and determine their sources. 

The approach is to perform 2-D simulations of shock waves impacting an array or cloud of 

particles, where the same conditions used in Regele et al. [27] will be used for the particle cloud. 

The fully compressible Navier-Stokes equations are solved, which provides a more accurate 

estimate of the magnitude of these terms than the previous Euler simulations [27]. A transverse 

array of particles is used to obtain deeper insight into the wave dynamics and unsteady vortex 

generation on each particle under the mutual wave-wave and wave-wake interaction between the 

particles. Quantification of the shock-particle cloud interaction highlights the impact of the 

complex shock dynamics that arise from the effect of neighboring particles on the mean and 

fluctuating flow field evolution. These results are then compared against a gradually induced flow 

over the same particle cloud, to remove the impulsive effect of the shock and understand how the 

impulsive shock dynamics contribute to the unsteadiness and the fluctuating field statistics. 
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The paper is organized as follows. The mathematical approach and the numerical methods are 

presented in Sections 2.2 and 2.3 respectively. The results for a shock wave impacting a transverse 

array of particles are contained in Section 0 and the results describing the particle cloud behavior 

are in Section 2.3.2. Finally, conclusions are drawn in Section 2.6. 

2.2 Mathematical approach 

2.2.1 Governing equations for PR-DNS 

In this work the interaction of shock and compression waves with particles are studied where 

the particles are frozen in place because of the large density ratio between the two phases [27]. In 

these interactions the smallest scale flow feature, other than the shock thickness, is the boundary 

layer present near the surface of each particle. The appropriate method to accurately capture these 

flow features is the Particle-Resolved Direct Numerical Simulation (PR-DNS) methodology in 

which the flow scales, introduced by the presence of large particles, are resolved [28], [29]. To 

this end, the fully compressible Navier-Stokes equations are solved to ensure the accuracy of the 

captured features in the cloud and the wake structure behind the cloud. The non-dimensionalized 

continuity, momentum and energy equations in conservative form are 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢௜)

𝜕𝑥௜
= 0 

(2-1) 

𝜕(𝜌𝑢௜)

𝜕𝑡
+

𝜕൫𝜌𝑢௜𝑢௝൯

𝜕𝑥௝
= −

𝜕𝑝

𝜕𝑥௜
+

1

𝑅𝑒௔

𝜕൫𝜏௜௝൯

𝜕 𝑥௝
 

(2-2) 

𝜕(𝜌𝐸)

𝜕𝑡
+

𝜕

𝜕𝑥௝
ൣ(𝜌𝐸 + 𝑝)𝑢௝൧ =

1

𝑅𝑒௔

𝜕൫𝑢௜𝜏௜௝൯

𝜕𝑥௝
+

1

(𝛾 − 1)𝑅𝑒௔𝑃𝑟

𝜕

𝜕𝑥௝
ቆ𝑘

𝜕𝑇

𝜕𝑥௝
ቇ 

(2-3) 

where the velocity, 𝑢௜ , is non-dimensionalized by a reference speed of sound 𝑐଴, time (𝑡) by 𝑙/𝑐଴, 

total energy (𝐸) by 𝑐଴
ଶ, density (𝜌) by 𝜌଴, pressure (𝑝) by 𝜌଴𝑐଴

ଶ, viscosity (𝜇) by 𝜇଴, thermal 

conductivity (𝑘) by 𝑘଴ , and temperature (𝑇) by 𝑇଴. All quantities with subscript “0” denote the 
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reference state, which is the undisturbed gas state. The Prandtl number (𝑃𝑟 = 𝜇଴𝑐௣଴/𝑘଴ ) is defined 

as the ratio of the momentum diffusivity to thermal diffusivity. 𝑅𝑒௔ is the acoustic Reynolds 

number determined by the characteristic length scale, 𝑙, 

𝑅𝑒௔ =
𝜌଴𝑐଴𝑙

𝜇଴
. 

(2-4) 

The non-dimensional equation of state is 

𝑝 = (𝛾 − 1)𝜌 ൬𝐸 −
1

2
𝑢௜𝑢௜൰. 

(2-5) 

The non-dimensional stress tensor, 𝜏௜௝ , is expressed as 

𝜏௜௝ = 𝜇 ቆ
𝜕𝑢௜

𝜕𝑥௝
+

𝜕𝑢௝

𝜕𝑥௜
−

2

3

𝜕𝑢௞

𝜕𝑥௞
𝛿௜௝ቇ, 

(2-6) 

and the temperature is found using a non-dimensionalized ideal gas equation of state 

𝑇 = 𝛾𝑝/𝜌 (2-7) 

with 𝛾 = 1.4. The temperature dependence of viscosity, 𝜇, is assumed to follow Sutherland's 

law[30]  

𝜇 =
1 + 𝑆ଵ

𝑇 + 𝑆ଵ
𝑇ଵ.ହ 

(2-8) 

where 𝑆ଵ is Sutherland constant normalized by 𝑇଴ and has the value of 0.4. 

2.2.2 Immersed Boundary method 

Particle Resolved DNS coupled with immersed boundary methods is a common approach 

used to study particle scale fluid dynamics [28], [31]–[34]. However, most of these approaches are 

based on incompressible formulations. Recently, Brown-Dymkoski et al. [35] developed an 

immersed boundary method for compressible flow based on the extension of Brinkman 

Penalization Method that allow any arbitrary Dirichlet, Neumann, or Robin-type boundary 
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condition and has been applied to several validation test cases [35] in the Adaptive Wavelet 

Collocation framework (explained in the next section).  In this work, the immersed boundary 

method developed by Brown-Dymkoski et al. [35] is used to impose adiabatic no slip conditions 

at particle surfaces. The penalization equations are: 

𝜕𝜌

𝜕𝑡
= (1 − 𝜒)𝑅𝐻𝑆 −

𝜒

𝜂௖
൬𝑛௞

𝜕𝜌 

𝜕𝑥௞
− 𝜙൰   

(2-9) 

𝜕𝜌𝑢௜

𝜕𝑡
= (1 − 𝜒)𝑅𝐻𝑆 − 𝜒 ቈ

1

𝜂௕
𝜌(𝑢௜ − 𝑢଴௜) + 𝜌𝜈௡

𝜕ଶ𝑢௜

𝜕𝑥௝𝜕𝑥௝
+

𝑢௜

𝜂௖
൬𝑛௞

𝜕𝜌 

𝜕𝑥௞
− 𝜙൰቉ 

(2-10) 

𝜕𝜌𝐸

𝜕𝑡
= (1 − 𝜒)𝑅𝐻𝑆

− 𝜒 ቈ
1

𝜂௖
൬𝑛௞

𝜕𝜌𝐸 

𝜕𝑥௞
൰ +

1

𝜂௕
𝜌൫𝑢௝ − 𝑢଴௝൯𝑢௝ −

1

𝜂௖
𝜌𝑢௝𝑛௞

𝜕𝑢௝

𝜕𝑥௞

− 𝜌𝑢௝𝜈௡

𝜕ଶ𝑢௜

𝜕𝑥௝𝜕𝑥௝
−

1

𝜂௖
𝐸𝜙 −

1

𝜂௖𝑐௩𝜌𝑞
቉ 

(2-11) 

where 𝜒 is a mask function that is unity inside the object and zero outside, RHS indicates the right-

hand side of the Navier-Stokes equations, and 𝑛௞ is the inward facing surface normal of the object. 

The interior of the particles are governed by the penalization terms, while outside the particles, the 

equations are the same as the Navier-Stokes equations. The velocity 𝑢଴௝ is the velocity of the 

object, which for this work is zero. The parameters 𝜂௖, 𝜂௕, and 𝜈௡ control the accuracy and 

numerical stability as described in Ref. [35]. In the penalization for 𝜌, the quantity 𝜙 is governed 

by the equation 

𝜕𝜙 

𝜕𝑡
= −

𝜒

𝜂௖
𝑛௞

𝜕𝜙 

𝜕𝑥௞
 

(2-12) 

where this quantity is passively controlled by the fluid physics and allows a Neumann condition 

on density, 𝜌. The error from these penalized boundary condition converges as 𝑂൫𝜂௖ , 𝜂௕
଴.ହ൯.   
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2.3 Numerical Approach 

In order to perform a particle-resolved direct numerical simulation of shock-particle 

interaction, high resolution is required to fully resolve the flow features around the particles and 

shock waves. However, high resolution is not required homoegenously throughout the domain. 

Thus, an adaptive grid framework based on the parallel adaptive wavelet collocation method 

(PAWCM) is used to perform the simulations.  The PAWCM is based on second-generation 

wavelets [36]–[39] and determines the grid points necessary to represent a solution based on a 

prescribed error threshold parameter 𝜖 and  maximum level of resolution 𝑗. This allows a solution 

to be represented with a prescribed level of accuracy on much fewer grid points than what is 

traditionally necessary.  

The hyperbolic solver developed for the PAWCM [40] is used to capture the wave structures 

and maintain numerical stability. This method is first order accurate near discontinuities such as 

shock waves and has higher accuracy in continuous regions. The spatial discretization in the 

continuous regions uses fourth-order finite-differencing and the time integration is based on the 

Crank-Nicolson method.  

2.3.1 Averaging Method 

To quantify flow unsteadiness and understand the significance of velocity fluctuations, mean 

flow statistics must be calculated. The phase average quantities of the gas phase, 〈𝑄〉 are obtained 

using  

〈𝑄〉 =
1

𝑉
න 𝑄𝑑𝑉

௏

 
(2-13) 

where 𝑉 is the sampling volume in the gas phase. In the 2D simulations performed in this work, 

the sampling volume becomes a sampling area. The sampling area (𝑉) is as thin as 3 cells in the 
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𝑥-direction and spans the entire domain height in the 𝑦-direction.  This equation is used to obtain 

the mean pressure and density at each 𝑥-position. The Favre average of a quantity 𝑄 is defined as 

𝑄෨ =
∫ 𝜌𝑄𝑑𝑉

௏

∫ 𝜌𝑑𝑉
௏

=
〈𝜌𝑄〉

〈𝜌〉
 

(2-14) 

2.3.2 Validation and drag force 

The evolution of the unsteady drag coefficient during the early interaction of a shock wave 

with a single particle is studied to replicate the experiment of Abe et al. [41] and validate the flow 

solver. In this interaction, the shock Mach number, 𝑀, has the magnitude of 1.7 and is defined as 

the ratio of slip velocity to the local speed of sound. The particle Reynolds number based on the 

particle diameter, 𝐷 is considered to be 2.5× 10ହ and is defined as   

𝑅𝑒௣ =
𝜌௦𝑢௦𝐷

𝜇௦
 

(2-15) 

The particle Reynolds number is proportional to the acoustic Reynolds number for the non-

dimensional governing equations, Eq.(2-9) to (2-11) by, 

𝑅𝑒௔ = 𝑅𝑒௣ ൬
𝜌଴

𝜌௦
൰ ൬

1

𝑀
൰ ൬

𝜇଴

𝜇௦
൰, 

(2-16) 

where subscript 𝑠 denotes the post-shock condition. 

The jump condition is defined using 

𝑄 = 𝑄௦ − 0.5(𝑄௦ − 𝑄଴) ൤1 + tanh ൬
𝑥௜ − 𝑥௜଴

𝛿/2
 ൰൨ (2-17) 

where 𝑄 = { 𝜌, 𝑢, 𝑇} is the vector of primitive variables with 𝜌 being the density, 𝑢 the velocity, 

and 𝑇 the temperature. The post-shock conditions 𝑄௦ = { 2.20, 0.93, 1.46} and pre-shock 

conditions 𝑄଴ = {1, 0, 1} are prescribed using Rankine–Hugoniot jump conditions. The simulation 

is performed for a particle located at the origin with non-dimensional diameter, 𝐷 = 1, in a 
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rectangular computational domain of (𝑋 × 𝑌) = [−𝐿, 𝐿] × [−0.5𝐿, 0.5𝐿], where 𝐿/𝐷 = 11.4. 

The initial shock location is 𝑥௜଴ = −0.52D and the jump transition distance is 𝛿 = 10ିସ𝐷. The 

undisturbed air downstream of the planar shock is initially at rest (𝑢଴ = 0). The post-shock 

condition is prescribed at the inlet and non-reflecting boundary conditions are imposed on other 

faces.  

The unsteady drag coefficient is calculated using  

𝐶஽ =
𝐹⃗ ∙ 𝑒̂௜

0.5𝜌௦𝑢௦
ଶ𝐴

 
(2-18) 

where 𝐹⃗ is the force acting on the particle and 𝑒̂௜ is the unit vector in the streamwise direction, 𝜌௦ 

is the post-shock density, 𝑢௦ is the corresponding post-shock velocity and A is the cross-section of 

the particle, which is equal to the particle diameter in the 2D simulation [42], [43]. The force 

components are obtained using the integral over the outer surface of the particle (𝛿𝛺) 

𝐹௜ = ඵ 𝑓௜𝑑𝑆
ఋఆ

 
(2-19) 

where 𝑓௜ = 𝜎௜௝𝑛௝ is the force acting on a differential surface dS, 𝑛௝  is the outward pointing normal 

and 𝜎௜௝ = −𝑝 𝛿௜௝ + 𝜏௜௝ is the total stress tensor. The surface integral is changed to a volume 

integral using the divergence theorem. To approximate the volume integral on a discrete grid, a 

summation over all grid points (k) inside the particle of volume  𝛺 is used [44]  

 

 

𝐹௜ = ම
𝜕𝜎௜௝

𝜕𝑥௝
𝑑𝑉 ≈ ෍ ቆ

𝜕𝜎௜௝

𝜕𝑥௝
ቇ

௞

∆𝑉௞

௞∈ఆఆ

. 
(2-20) 

Figure 2-1 compares the evolution of the unsteady drag coefficient over the particle obtained 

from the numerical solution, with the number of points per particle 𝑁௣ = 176, against the 
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experimental results reported by Abe et al. [41]. Time is non-dimensionalized by the acoustic time 

of the particle 𝜏ௗ, which is the ratio of the particle diameter (𝐷) over the speed of sound of the 

undisturbed gas (𝑐଴). The unsteady drag coefficient experiences a maximum after being impacted 

by the shock. The magnitude of the maximum drag and the drag profile over time obtained from 

simulation are in good agreement with the experimental counterpart. 

 
Figure 2-1 Comparison of the unsteady drag force obtained from the numerical results with the 
experimental data of Abe et al. [41] 

  

2.4 Shock impacting a transverse array of particles 

In this problem, the formation of the complex wave structure due to wave-wave interaction 

between the wave systems of neighboring particles, the wave-wake interaction between this 

complex wave system and the wake behind each particle, the evolution of local supersonic zones 

(LSZs), defined by Xu et. al [45], over the wake of each particle and the onset of unsteadiness 

under these interactions is discussed. 
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(a) 

 

(b) 

 
Figure 2-2 Initial evolution of the wave system around each particle at 𝑡 = 0.83 and 𝑡 = 2.77. 
Top: The numerical Schlieren image. Bottom: Mach number contour. Local supersonic zones, 
represented with sonic lines, are shown on top and bottom of the particle. 
 

 To simulate the shock interaction with a transverse array of particles, we consider the particle 

array as periodic images of a unit cell consisting of one particle with non-dimensional diameter 

𝐷 = 1, in a computational domain of (𝑋 × 𝑌) = [−1.5𝐿, 𝐿] × [−0.5𝐿, 0.5𝐿], with 𝐿/𝐷 = 11.4 

and impose periodic boundary conditions in the transverse direction. The particle diameter is 

considered to be the characteristic length scale. The transverse particle spacing between the 

adjacent particles (∆) is equal to L. The shock Mach number is 1.67. The jump condition is defined 

using Eq. (2-17) with the post-shock conditions 𝑄௦ = {𝜌, 𝑢, 𝑇}௦ = { 2.14, 0.89, 1.44} and pre-

shock conditions 𝑄଴ = {𝜌, 𝑢, 𝑇}଴ = {1, 0, 1}. The shock wave is initially located at a non-

dimensional axial location 𝑥௜଴ = −0.52D and the particle is located at the origin. The undisturbed 

air downstream of the planar shock is initially at rest (𝑢଴ = 0). For this problem, the post-shock 

condition is prescribed at the inlet (𝑥௜௡ = −1.5𝐿) and a non-reflecting boundary condition [46] is 

imposed as the outlet condition (at 𝑥௜௡ = 𝐿). Similar to the validation case, time is non-

dimensionalized by the acoustic time of the particle 𝜏ௗ. 
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Figure 2-2 depicts the initial evolution of the wave system around the particle in a unit cell at 

two non-dimensional times 𝑡 = 0.83 and 𝑡 = 2.77. The top half contains numerical Schlieren 

images using the density gradient and the bottom half is colored by the flow Mach number. Similar 

to other works [32], [47]–[51], we first observe the formation of an upper shock wave system 

consisting of the incident shock (𝐼𝑆), the reflected shock (𝑅ଵ), the slip surface (𝑆ଵ), and the Mach 

stem (𝑀ଵ) at the early time of interaction in Figure 2-2 a. Then, as illustrated in Figure 2-2b, when 

the shock propagates further downstream the Mach stem is reflected at the plane of symmetry and 

the lower shock-wave system is formed. This consists of the Mach stem of the upper system (𝑀ଵ), 

a second reflected shock wave (𝑅ଶ), a second slip surface (𝑆ଶ), and a second Mach stem (𝑀ଶ). 

Figure 2-2  also shows that a local supersonic zone (LSZ), presented by sonic contour lines (𝑀 =

1), forms on the particle due to flow acceleration and grow over the boundary layer and wake 

behind the particle.  

As the incident shock propagates downstream, the wave system of the particle grows toward 

the cell boundary and starts to interact with the wave system of the neighboring particles in the 

adjacent cell in the transverse direction. Figure 2-3 shows the time evolution using numerical 

Schlieren images of the two neighboring particles in the adjacent cells. The wave-wave interaction, 

which is the mutual interaction between the wave systems of the two neighboring particles, is 

shown in Figure 2-3a.  In Figure 2-3b the incident shock (IS) and Mach stems (𝑀ଵ) and (𝑀ଶ) of 

both particles superimpose to form the transmitted shock (𝑇𝑆). As shown in Figure 2-3c, the wave-

wake interaction starts once the reflected shocks reach the wake behind the particles.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 2-3 Wave-wave and wave-wake interaction between the neigbouring particles in two 
adjacent cells presented by the time series of Schlieren image at at a) 𝑡 = 5.04, b) 𝑡 = 7.32, c) 
𝑡 = 9.60, d) 𝑡 = 15.30, e) 𝑡 = 22.14, f) 𝑡 = 25.56. 
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Some portion of the reflected shock (𝑅ଵ,ଶ) travels upstream of the wake and superimposes 

with the reflected shocks upstream of the particle and eventually form a cumulative reflected shock 

(RS) upstream of the particle Figure 2-3d. The other portion of the reflected shock (𝑅ଵ,ଶ) along 

with 𝑅ଶ continues to reverberate downstream of the particle while interacting with the wake. The 

asymmetry and the waves appearing in the wake in Figure 2-3d suggests the commencement of 

Kelvin-Helmholtz instability from this interaction. This instability leads to unsteadiness and 

asymmetric vortex shedding under the effect of continuous wave-wake interactions in Figure 2-3e-

f.  

The LSZs grow throughout the wake during this interaction and induce stretching effects on 

the wake behind the particle Figure 2-3 a-d). Figure 2-3e shows the LSZs of the neighboring 

particles merge together and a shock forms between the wakes of neighboring particles, which 

indicates the flow is choked due to the convergent-divergent geometry formed by the particles and 

the wakes behind them. The shock location in the wake dictates the location of vortex roll-up. The 

formation of the LSZs on the vortices increases the size of eddies and contributes to the formation 

of large structures (Figure 2-3e-f). 

To test the grid dependence of the solution, this problem is tested over three different 

resolutions based on the effective number of grid points per particle diameter, namely 𝑁௣ = 44, 

88, and 176. Figure 2-4 compares the evolution of the unsteady drag coefficient for the three 

resolutions. Excellent agreement exists for the drag coefficient for 𝑡 < 22 when the flow is 

dominated by gasdynamic processes with shock waves inducing flow and reflecting off of 

particles. During this time the wake behind the particle is mostly symmetric but eventually 

destabilizes and asymmetry is introduced. At 𝑡 = 22 a reflected shock interacts with the wake and 

completes the onset of unsteady vortex shedding. As expected, some variability exists in the drag 
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coefficient due to numerical diffusion. However, the results appear to be converging with 

increasing resolution and the difference between the 𝑁௣ = 88 and 176 cases is small. This suggests 

that the impact of the grid dependence for the 𝑁௣ = 176 case is minor.  

 
Figure 2-4 Grid convergence for the evolution of unsteady drag coefficient on each particle after 
the interaction of the shock wave with the particle array. 

 

2.5 Particle cloud behavior 

In this section the particle cloud is impacted by both shock and compression waves. The 

particle cloud configuration is based on the configuration proposed by Regele et. al [27], shown in 

Figure 2-5.  

The particle cloud thickness is used as the reference length and the particle diameter is found 

based on the desired volume fraction 𝛼ௗ = 0.15 where 

𝐷ଶ =
4𝛼𝐿ଶ

𝑁𝜋
 

(2-21) 

and 𝑁 = 24 is the number of particles. The particles are distributed in the 𝑥-direction with equal 

spacing 𝛿௫ = 𝐿/𝑁 so that each particle occupies a unique 𝑥-location, which minimizes the 

fluctuations in plane-integrated cross-section. Then the particle rows are shuffled from the inline 
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distributed arrangement. Finally, each consecutive column of particles is shifted in the positive 𝑦-

direction by approximately one particle diameter. This configuration minimizes the fluctuations in 

averaged variables and introduces the possibility for the oscillations to tend toward zero as the 

number of particles becomes large. See Ref. [27] for a more detailed discussion of the 

configuration. 

 
Figure 2-5 Particle arrangement 

In this study, we focus on the early interaction of shock and compression waves with the 

particle cloud, thus based on Ref. [27] and [8] the particles are fixed in place. Ling et al. [8], Mehta 

et. al. [42] and Sridharan et. al. [43] justify this choice due to the ratio of velocity change in the 

particle to the fluid scaling with the fluid-to-particle density. Since the fluid-to-particle density 

ratio is extremely small, the ratio of the changes in velocity is likewise small. For example, in the 

present case of glass particles in air [21], the density ratio is 𝑂(0.001) and thus the timescale 

associated with significant particle movement is long due to the large inertia of the particle. 

Therefore, it is reasonable to ignore particle movement in the time scale considered here. 

The simulation is performed using the computational setup shown in Figure 2-6. The 

rectangular computational domain is (X × Y) = [−6𝐿, 6𝐿] × [−0.5𝐿, 0.5𝐿] where 𝐿 = 1  is the 
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thickness of the particle cloud, and 𝐿/𝐷 = 11.4. The cloud is located at −0.5 ≤ 𝑥 ≤ 0.5. The 

shock and compression waves are initially located at 𝑥 = −1.0. The undisturbed air downstream 

of the waves is initially at rest, 𝑢଴ = 0.  A detailed discussion of the required grid resolution is 

contained Section 2.5.2. 

 
Figure 2-6 Initial pressure profile for a) shock induced case, b) gradually started case. 

 

In the shock wave case, the particle cloud is impacted by a shock wave (𝑀௦ = 1.67) with the 

same jump conditions as described in the previous section. In the compression wave case, flow is 

induced gradually over the particles to study the difference in flow unsteadiness between the two 

cases. This provides a way to isolate the impulsive effects of shock waves. In this case, the two 

different states separated by the shock are separated with a smooth transition of states where the 

transition distance in Eq. (2-17) is equal to the particle cloud thickness 𝛿 = 𝐿. Figure 2-6 compares 

the initial pressure profile of the shock and gradually induced cases. Similar to the particle array 

simulations, periodic boundary conditions are imposed in the transverse direction, the post-shock 

condition is prescribed at the inlet, and non-reflecting boundary conditions [46] are imposed at the 

outlet on the right. 



www.manaraa.com

34 
 

2.5.1 The evolution of wave system and local supersonic zones 

The evolution of the complex wave system in the particle cloud can be best described using 

the effect of flow dilatation. The dilatation is the divergence of velocity (𝛻 ⋅ 𝑢ሬ⃗ ), which is non-zero 

for compressible flow. This term appears in the non-conservative form of the continuity equation 

as a source term: 

1

𝜌

𝐷𝜌

𝐷𝑡
= −𝛻 ⋅ 𝑢ሬ⃗  

(2-22) 

 

where a non-zero dilatation indicates that the density is changing.  Figure 2-7 contains snapshots 

of dilatation (𝛻 ⋅ 𝑢ሬ⃗ ) at several different instances after the shock first encounters the particle cloud. 

In these figures and all the following numerical results, time is non-dimensionalized by the 

acoustic time of the cloud 𝜏 = 𝐿/𝑐଴. Negative dilatation (shown in black) represents flow 

compression while positive values (shown in white) represent flow expansion.  

Figure 2-7a shows that when the incident shock first hits the particle cloud, a collective 

reflected bow shock is created ahead of the cloud, which is comprised of multiple shock 

reflections, one from the wave system of each particle. A collective transmitted shock is also 

formed downstream due to the superposition of the incident shock and the Mach stems of all 

neighboring particles. Expansion fans form on each particle, which introduces non-zero dilatation. 

Figure 2-7b shows that, as time proceeds, the transmitted shock impinges on the later particles and 

additional reflected waves from those particles interact with the wave systems of the leading 

particles and increase the complexity of the wave system. Portions of these waves propagate 

upstream and increase the amplitude of the cumulative reflected shock. The white areas in the 

figure indicate positive dilatation, which shows that expansion waves are induced at some point in 

time near each particle.  
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Figure 2-7 Snapshots of the dilatation contours after the interaction of shock with the particle 
cloud at a) 𝑡 = 0.43, b) 0.56, c) 1.00, d) 2.10, e) 3.2. 

 
Figure 2-8 The evolution of local supersonic zones (LSZ) in the snapshots of the Mach numbers 
contours after the interaction of shock with the particle cloud at a) 𝑡 = 0.43, b) 0.56, c) 1.00, d) 
2.10, e) 3.2. 
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As the transmitted shock emerges from the cloud (Figure 2-7c), the reflected shock waves 

start to dissipate near the leading edge of the cloud. The flow expansion along these particles also 

reduces (Figure 2-7c-e) and propagates into the cloud as time proceeds. However, the shock waves 

and expansion waves continue to persist at the trailing positions of the cloud. The persistence of 

these waves is due to the convergent-divergent flow geometry created by the presence of the 

particles that creates a choked flow point at the trailing edge of the cloud. Thus, as the gas emerges 

from the cloud it accelerates to supersonic speed. This creates an O(1) density variation that 

corresponds to a large dilatation in the cloud and wake region. Figure 2-7d-e indicates the presence 

of weaker shocks reverberating downstream of the cloud.  

Snapshots of the instantaneous flow Mach number contour are depicted in Figure 2-8. As the 

shock propagates through the cloud the flow accelerates over each particle. Local Supersonic 

Zones (LSZs) appear over the particles (Figure 2-8a) and grow (Figure 2-8a-b) due to the mutual 

wave-wave interaction between the neighboring particles and eventually leads to choked flow 

conditions. Figure 2-8c-f shows that as the transmitted shock leaves the particle cloud, the LSZs 

travel downstream and accumulate mostly around the choked points at the leading edge of the 

cloud and the wake behind. This provides evidence of the acceleration of the flow to supersonic 

speeds while leaving the cloud.  

2.5.2 Grid convergence 

 In Section 2.4 it was found that using 𝑁௣ = 176 cells across a particle diameter was sufficient 

to minimize the grid sensitivity of the unsteady drag coefficient. In this section the same resolution 

is used, but it is prudent to analyze the sensitivity of the mean and fluctuating flow fields since 

these are primary quantities of interest. Thus, in this section a grid sensitivity study is performed 
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for both the mean streamwise velocity (𝑢 ෥ ) and the fluctuating velocities. The same resolution used 

in Section 2.4 is used with 𝑁௣ = 44, 88, 176. 

The fluctuation in the fluid velocity field (𝑢′′) are defined with respect to the Favre averaged 

fluid velocity (𝑢෤) as 𝑢′′ = 𝑢 − 𝑢෤ . The Root Mean Squared (RMS) of the velocity fluctuations is 

defined  

𝑢௥௠௦ = ඥ𝑢′′෪ = ඥ𝑢ଶ෪ − 𝑢෤ଶ (2-23) 

 

Figure 2-9a-c demonstrates the mean streamwise velocity 𝑢෤ , and RMS velocities in 

streamwise (𝑢௥௠௦) and transverse (𝑣௥௠௦) directions as a function of position in streamwise 

direction, 𝑥, for the coarse, fine, and very fine grid resolutions, at non-dimensional time 𝑡 = 3.2. 

In these figures, the particle cloud is located between −0.5 < 𝑥 < 0.5 and the wake behind the 

cloud is located between 0.5 < 𝑥 < 2.5. For all three resolutions, the mean velocity (Figure 2-9a) 

demonstrates convergence, however with the fluctuating velocities (Figure 2-9b-c) there are still 

some variations between the magnitude and phases at some locations. These variations occur near 

the trailing edge of the cloud because of numerical viscosity on both strong shock waves and the 

shear layers in the wakes. Overall, the grid using 𝑁𝑝 = 176 case suggests that this level of 

resolution is sufficient to capture the reflected shock, the transmitted shock, the contact 

discontinuity as well as the statistics in mean flow field and averaged magnitude of the velocity 

fluctuations. Thus, this resolution is used to represent the results for the particle cloud test cases.  

The comparison of the mean flow field and the RMS velocities is shown in Figure 2-9d at a 

non-dimensional time 𝑡 = 3.2 to illustrate the relative importance of the fluctuating field to the 

mean flow field. The stream-wise RMS velocity is larger than the transverse RMS velocity. The 

RMS velocities are the same order as the mean velocity, both inside the cloud and in the wake 

behind that. Regele et al. [27] also reported similar findings. However, as expected, the fluctuation 
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amplitude is smaller in the present work than what have been observed in their Euler simulations. 

This is expected since in the Euler simulation the molecular viscosity is not present and which may 

permit non-physical oscillations while using the Navier-Stokes equation coupled with the IBM has 

removed much more of the noise and non-physical oscillations associated with inviscid flow 

unsteadiness. 

(a) (b) 

  
(c) (d) 

  
Figure 2-9 Grid convergence study for a) mean streamwise velocity, b) streamwise RMS 
velocity, c) transverse RMS velocity. d) Comparison of mean stream-wise velocity (𝑢ଵ෦) with the 
stream-wise, 𝑢௥௠௦,  and transverse, 𝑣௥௠௦ , velocity profile at 𝑡 = 3.2. 
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2.5.3 Analysis of the flow unsteadiness 

The evolution of the unsteadiness is presented in Figure 2-10 using contour plots of the 

vorticity. The instantaneous snapshots in this figure are taken at the same time as Figure 2-7 and  

Figure 2-8. Therefore, the reader is referred to those figures for the corresponding wave-system 

and LSZ locations. 

Figure 2-10a-b shows that as a shock penetrates through the cloud, a boundary layer forms 

around each particle. The boundary layers eventually separate under the effect of the local wave-

systems. The separated boundary layer (wake) behind each particle becomes unstable and vortex 

shedding starts. The magnitude of vorticity inside the cloud increases between 𝑡 = 1 and 2.1 

(Figure 2-10c-d) as the number of the shocks and LSZs in the cloud increase, which indicates an 

increase in unsteadiness during this period. Between 𝑡 = 2.1 and 3.2 when shock transmits 

downstream, the magnitude of the vorticity decreases for the upstream particles whose positions 

are 𝑥 < 0 (Figure 2-10d-e), where the shocks have been dissipated and LSZs have moved 

downstream. However, large unsteadiness is seen around the trailing edge of the cloud due to the 

presence of shocks and choked flow conditions that persist in those areas and continuously interact 

with the vortical structures. The vortical structures are elongated under the effects of LSZs. This 

effect is limited in the particle cloud due to the blocking effect of the neighboring particles. 

However, the stretching effect is greatest on particles located at the trailing edge of the cloud where 

the flow is accelerating in larger LSZs and experiences larger expansion and dilatation, while 

leaving the cloud, which induces more stretching effect on the shear layers.  
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Figure 2-10  Snapshots of the vorticity after the interaction of shock with the particle cloud at  
a) 𝑡 = 0.43, b) 0.56, c)  1.00, d) 2.10, e)  3.2. 

For deeper insight into the sources of unsteadiness in the shock-particle cloud interaction a 

budget analysis of the vorticity equation production terms is conducted. The evolution equation 

for vorticity in a compressible flow   

𝐷𝜔ሬሬ⃗

𝐷𝑡
= (𝜔ሬሬ⃗ ⋅ 𝛻)𝑢ሬ⃗ − 𝜔ሬሬ⃗ (𝛻 ⋅ 𝑢ሬ⃗ ) +

𝛻𝜌 × 𝛻𝑝

𝜌ଶ
+

1

𝑅𝑒௔
𝛻 × ൬

𝛻 ⋅ 𝜏

𝜌
൰ 

(2-24) 

 

describes the production and evolution of the fluid vorticity. In this equation, the left-hand side is 

the material derivative of the vorticity vector that describes the rate of change for vorticity of the 

gas phase. This change can be attributed to unsteadiness in the gas phase and the advection of 

vorticies. The first term on the right-hand side represents the stretching or tilting of vorticity due 

to velocity gradients. This term is zero for the 2D analysis.  The second term on the right-hand 

side is the vorticity-dilatation that describes stretching of vorticity due to flow compressibility. 
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The third term on the right-hand side is the baroclinic term, which accounts for the production of 

vorticity due to misalignment of density and pressure gradient. The last term accounts for the 

diffusion of vorticity due to viscous diffusion. This term can be rewritten as   

𝛻 × ൬
𝛻 ⋅ 𝜏

𝜌
൰ = 𝛻 × ቆ

𝛻 ⋅ (𝜇∇𝑢ሬ⃗ )

𝜌
ቇ = 𝜈𝛻 × ൫∇. (∇𝑢ሬ⃗ )൯ = 𝜈𝛻 × 𝛻ଶ𝑢ሬ⃗ = 𝜈𝛻ଶ𝜔 (2-25) 

 

assuming that the viscosity (𝜇) is constant and 𝜈 is the kinematic viscosity.  This form describes 

the effect of viscous diffusion on the vorticity distribution. Analogues to the diffusion terms in the 

Navier-Stokes equations suggest that this term is always diffusive because the kinematic viscosity 

is always positive.  

 

 

 
Figure 2-11  Vorticity production terms at 𝑡 = 3.2 for a) diffusion term, b) baroclinic term, c) 
vorticity-dilatation term. 

 
Figure 2-11 shows the dilatation, baroclinic, and diffusion source terms of the vorticity 

equation at a non-dimensional time of 𝑡 = 3.2 for the shock-particle cloud interaction case. Figure 

2-11a shows the diffusion term that is present around the particles due to the shear induced by 
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particles, and in the shear layers of vortical structures both inside the cloud and in the wake behind. 

Due to the no-slip boundary condition at the particle surface, the viscous flow decelerates in a thin 

boundary layer along the surface, which produces vorticity. Subsequently, this vorticity is advected 

downstream with the fluid. Away from particle surfaces, this term diffuses vorticity.  

It can be seen that the diffusion term is larger around the trailing edge particles than the leading 

edge particles. This can be explained by comparing this plot with the Mach number contour plot 

at the corresponding time (Figure 2-8e). Mach number contours indicate that the flow is slower in 

most locations near the leading edge while the flow is significantly faster near the trailing edge. 

As a result, stronger shear stress is present in the flow around particles closer to the trailing edge.  

Figure 2-11b illustrates the baroclinic term. This term results in generation of vorticity from 

unequal acceleration as a result of misalignment between the pressure and density gradients. In 

this condition, the pressure force on a fluid element does not pass through its center of mass and 

the pressure exerts a torque on the fluid element to generate vorticity or intensify pre-existing 

vorticity. Comparison of Figure 2-11b with the vorticity profile (Figure 2-10e) and wave structure 

(Figure 2-7e) indicate that this effect is present where shocks collocate with vortical structures and 

is more dominant wherever shocks are stronger.  The wave structure in Figure 2-7e shows that at 

𝑡 = 3.2 stronger shocks are located at the second half of the cloud and the near wake region behind 

the cloud. As a result, the baroclinic term is more significant in those locations. 

Figure 2-11c. shows the vorticity-dilatation term at 𝑡 = 3.2. Comparison of this figure with 

the dilatation contours at the corresponding time (Figure 2-7e) indicate that the vorticity-dilatation 

term acts as a source for amplifying pre-existing vorticity in the region of negative dilatation 

(compression) and as a sink to attenuate vorticity in the region of positive dilatation (expansion).  
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The absolute value of this term is observed to be large in the supersonic regions (see Figure 2-8e), 

near the trailing edge of the cloud and in the wake region. 

The qualitative discussion of the vorticity source terms above helps identify the effect of each 

term on the evolution of vorticity and unsteadiness and tie the effect with the local flow features, 

such as wave structure, LSZs and local dilatation. To better quantify these three terms and 

demonstrate the relative importance of them in the strong flow unsteadiness, we present a 

quantitative discussion based on the comparison of their phase-averaged magnitude. Similar 

quantification is performed for a gradually induced case.  

The averaging method used to quantify the flow unsteadiness is described in Section 2.3.1. 

Since the resultant curves are still oscillatory due to the strong flow unsteadiness, a spline curve 

with the smoothing factor of 𝑠𝑝 = 0.998 is fitted to the data set to create a smooth graph.  

Figure 2-12 shows the magnitude of the averaged diffusion, baroclinic and vorticity-dilatation 

terms at four times, 𝑡 = 0.56, 1, 2.1, 3.2, for both the shock-induced and gradually-induced cases. 

To focus on regions with flow unsteadiness the results are plotted from 𝑥 = −0.5 to 𝑥 = 2.5. For 

both cases, the vorticity-dilatation term is the most dominant term at all considered times. The 

baroclinic and diffusion terms are both almost an order of magnitude less than the vorticity-

dilatation term. The magnitude of each term for the shock-induced case is much greater than the 

gradually induced case. The order of the difference between the two cases for each term at the 

early time of interaction is larger than at later times. This indicates that the impulsive nature of the 

shock produces additional unsteadiness in the flow. 

Figure 2-12a shows that for early times in the gradually induced case, the diffusion term and 

the baroclinic term are of the same order and competing together. In this case, the baroclinic effect 

is larger in the first half of the cloud while the diffusion term is larger in the second half. This 
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occurs because the induced flow transitions from low speed to high speed conditions further into 

the particle cloud. The strength of the reflected shock is proportional to the free stream velocity. 

Thus, the reflected shocks in the first half that have experienced higher free stream velocities than 

the second half of the cloud are stronger, which leads to a stronger baroclinic effect on those 

particles. In the shock-induced case, since the reflected shock waves reverberate around inside the 

cloud, the baroclinic term is almost an order larger than the diffusion term.  

(a) (b) 

(c) (d) 

Figure 2-12 The magnitude of the averaged diffusion (black), baroclinic (red) and vorticity-
dilatation (blue) terms at four times, 𝑡 = 0.56, 1, 2.1, 3.2 for both cases of the shock-induced 
flow over the cloud (⋅⋅o) and the gradually-induced flow over the cloud(− ⋅). Cloud is located at 
−0.5 < 𝑥 < 0.5 and wake is at 𝑥 > 0.5. 
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 As flow accelerates in the cloud (Figure 2-12b) the shear on the particles increases and thus 

the vorticity production from the diffusion term increases as well. The Baroclinic term grows due 

to the formation of reflected shocks and shocklets all over the cloud. The vorticity-dilatation term 

grows because the flow remains transonic within the cloud (Figure 2-7c).   

 After the transmitted shock leaves the cloud (Figure 2-12b), the shock waves dissipate 

which causes the baroclinic term to reduce. Figure 2-12c indicates that the decay starts from the 

leading edge and penetrates the cloud with time. Dilatation also diminishes in the cloud (Figure 

2-7d-e) due to this transition and causes the vorticity-dilatation term to reduce as well (Figure 

2-12c-d).  However due to the choked flow conditions, local supersonic zones and finite dilatation 

around the trailing edge, all source terms maintain a peak value for 0.3 < 𝑥 < 0.5 at late times 

(Figure 2-12d).  

In the wake, all vorticity production sources become smaller. In this region the dilatation and 

baroclinic terms are still free to produce more vorticity from shock waves and localized supersonic 

zones. However, in the absence of particles the diffusion term dissipates the existing vorticity. 

Once the flow is choked and passes through standing shocks to equalized the pressure the flow 

will remain subsonic. This ensures that the baroclinic term decreases further into the wake region 

(Figure 2-7d). Finally, once the flow is subsonic the vorticity amplifying effect of the dilation term 

will also disappear, which results in reduction of vorticity-dilatation term (Figure 2-7e). 

2.5.4 Kinetic energy in the fluctuating motion 

The importance of the fluctuating field and the effect of fluctuating velocity on the flow 

behavior can be best described using the Reynolds stress term in the mean flow momentum 

equation. The trace of the Reynolds stress term is kinetic energy in the fluctuating field, which is 

defined as 
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K =
1
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. 

(2-26) 

 

The average kinetic energy, E୩, in the gas phase  

E୩ =
1

2
 
⟨𝜌𝑢௜𝑢௜⟩

⟨𝜌⟩
=

𝑢ప𝑢ప ෧

2
 

(2-27) 

 

is the sum of the kinetic energy in the mean fluid field, E୩
෪, 

E୩
෪ =

u఩෥ u఩෥

2
 

(2-28) 

 

and the average kinetic energy in the fluctuating field, 𝐾. It should be noted that the objective of 

the present work is to provide a better understanding of how flow unsteadiness is created in these 

situations and not to quantitatively predict the flow unsteadiness. The particle configuration 

developed by Regele et al. (2014) provides a way to minimize fluctuations in the volume fraction 

when calculating averaged quantities. Quantitative prediction must be performed with spherical 

particles in three dimensions using multiple particle arrangements. 

(a) (b) 

Figure 2-13 x-t diagram of the kinetic energy in the fluctuating field for a) shock-induced and 
b) gradually-induced flow by a compression wave. 

 

Figure 2-13 shows the x-t diagram of the non-dimensional kinetic energy in the fluctuating 

field, 𝐾, for both the shock-induced case and the gradually-induced case. From the figure it is 
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evident that the average kinetic energy in the fluctuating field, 𝐾 is present, in both the cloud 

(−0.5 < 𝑥 < 0.5) and the wake behind the cloud (between 𝑥 = 0.5 and the contact line) for both 

cases. In both cases the magnitude of 𝐾 is significant during the early phases of interaction. 

Comparison of the shock-induced case, Figure 2-13a, with the gradually-induced case, Figure 

2-13b, shows that before about 𝑡 = 2.1, when the flow is in the unsteady mode, the shock-induced 

case presents a higher magnitude of the kinetic energy in the fluctuating motion both inside the 

cloud and on the trailing edge of the cloud and it experiences a more rapid change in comparison 

to the gradually-induced case. This provides evidence that the impulsive effect of the shock, 

introduces stronger unsteady effect. In both cases, after  𝑡 = 2.2 the flow transitions to the steady-

state, showing a decay in 𝐾  due to the dissipation of shocks and compression waves and reduction 

of wave-wake interactions. However, it is seen that 𝐾 holds a significant value at locations around 

the trailing edge of the cloud (𝑥~0.5) and the immediate wake behind it. 

To better illustrate the significance of the strong unsteady effect induced by the impulsive 

effect of the shock, the evolution of the kinetic energy over time in three specific locations of the 

particle cloud (where 𝑥 is −0.3, 0.0 and 0.3) are compared with that of the gradually-induced case 

in Figure 2-14. At each location, the evolution of the kinetic energy in the fluctuating field, 𝐾, 

reaches a peak followed by a decay over time and oscillates around its steady state value for both 

cases. The peak value for the shock-induced case is larger at all locations. The difference between 

the peak values indicate the impulsive effect of shock on appearance of the fluctuating field at 

those locations. This effect is more dominant in the particles closer to the leading edge, 𝑥 = −0.3 

and it decreases as we reach 𝑥 = 0.3. At each location the peak occurs at a later time for the 

gradually induced case due to the delay of impact over the large transition distance, 𝛿, for the 

compression wave.  
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Figure 2-14 Comparison of kinetic energy in the fluctuating motion at three different positions, 
𝑥 = −0.3, 0.0, 0.3, of the particle cloud for the shock induced (S) and gradually induced cases 
(G). 

The steady-state values for the gradually-induced case converges to that of the shock induced 

case at each location because the cumulative effect of the shock and the compression wave should 

converge together. The reason being that both waves induce flow transition from the same pre-

shock to the same post-shock condition.  The magnitude of steady-state value of 𝐾 is larger near 

the trailing edge of the cloud due to the choking effect in local supersonic zones and persistence 

of moving shocks at both case which lead to continues wave-wake interaction between these shock 

waves and the expanded vortical structure that introduces continuous instability and enhances the 

velocity fluctuations [52]. 

Comparison of the non-dimensional kinetic energy in the fluctuating field, 𝐾, with the kinetic 

energy in the mean flow field, E୩
෪,  reveals the importance of the fluctuating field generated under 

the effect of the shock on the particle cloud. This comparison is demonstrated in Figure 2-15 at 

four different non-dimensional times, 𝑡 = 0.56, 𝑡 = 1, 𝑡 = 2.1 and 𝑡 = 3.2. At 𝑡 = 0.56 (Figure 

2-15a). When the transmitted shock is inside the cloud, the kinetic energy in the fluctuating field, 

𝐾, is developing and reaching the kinetic energy in the mean flow field E୩
෪.  
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(a) (b) 

  
(c) (d) 

  
Figure 2-15 Comparison of the mean kinetic energy with the kinetic energy in the fluctuating 
field 

 

Figure 2-15b shows that, as the transmitted shock is emerging the cloud, 𝑡 = 1, 𝐾 has 

increased all over the cloud while E୩
෪ has decreased. This means that the energy has been 

transferred from the mean flow field to the fluctuating field. This leads to 𝐾 having a larger value 

than E୩
෪ in almost 60% of the cloud. This is the consequence of production of multiple reflected 

shocks that continuously interact with the highly unsteady wakes and enhance the kinetic energy 

in the fluctuating motion.  

As the transmitted shock is traveling downstream (Figure 2-15c-d) both 𝐾 and E୩
෪  decline in 

the leading locations of the cloud because the flow regime has changed to subsonic in these regions 
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and the shock waves have dissipated. However, towards the trailing edge they still hold larger 

values because of the persistence of the shock waves and LSZs in those areas. The ratio of 𝐾/E୩
෪ 

is approximately one both inside the cloud and the near wake behind that.  

These results show that the unsteady effect of the shock induces a significant amount of kinetic 

energy in the fluctuating motion. Comparison of magnitude of kinetic energy in the fluctuating 

motion and the kinetic energy in the mean flow field proves that 𝐾 contribute significantly to the 

average kinetic energy, E୩. Since 𝐾 is the trace of the Reynolds stress term it implies that this term 

in the momentum equation and the corresponding unclosed terms in the energy equation cannot 

be neglected while attempting to model shock-particle cloud interaction in the dense regime. 

 

2.6 Conclusions 

In this work the interaction of a shock wave with two different configurations of particles in 

the dense gas-solid regime, namely a transverse array of particles and a particle cloud is 

investigated. Particle-resolved direct numerical simulations are performed by solving the 

compressible Navier-Stokes equations coupled with an immersed boundary method.  

Simulations of a shock interaction with a transverse array of particles reveal the evolution of 

the wave system, local supersonic zones, and the wake behind each particle as well as the 

commencement of Kelvin-Helmholtz instabilities and vortex shedding under the effect of the 

wave-wave and wave-wake interactions between the neighboring particles. It is demonstrated that 

the unsteady drag coefficient of a cylinder after shock passage agrees well with experimental data. 

It is also shown that the drag coefficient, mean and unsteady flow velocities are insensitive to grid 

resolution. 
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Shock interaction with a particle cloud in comparison with a gradually-induced flow over the 

same particle cloud is investigated to quantify the flow unsteadiness and velocity fluctuations that 

arise from these interactions. The sources of flow unsteadiness and vorticity generation are 

quantified by analyzing the vorticity production terms for compressible flows.  It is shown that a 

primary source of vorticity comes from the viscous diffusion term when the no slip condition at 

particle surfaces creates strong shear forces. This vorticity is then advected downstream. The 

baroclinic term, which is larger than the diffusion term in most locations, generates vorticity where 

reflected shocks collocate with the vortical structures.  The vorticity-dilatation term is almost an 

order of magnitude larger than the other two terms. It amplifies pre-existing vorticity in the region 

of negative dilatation and attenuates vorticity in the region of positive dilatation. The magnitude 

of each term for the shock-induced case is much larger than the gradually induced case because of 

a shock waves natural ability to induce flow unsteadiness. The order of this difference reduces 

over time until the shock and gradually induced cases reach the same unsteadiness levels. 

To perform a detailed analysis of the importance of velocity fluctuations and kinetic energy 

in the fluctuating field, arising from the strong unsteadiness, phasic-Favre averaging statistics are 

calculated. Based on this analysis, the kinetic energy in the fluctuating field is the same order of 

magnitude as the kinetic energy in the mean flow field and contributes significantly to the mean 

kinetic energy. Thus, the Reynolds stress term in the momentum equation and the corresponding 

unclosed terms in the energy equation cannot be neglected while modeling the dense compressible 

flow regime. While this effect is true in general it is greater in shock-induced situations.    
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Abstract 

Under startup conditions, supersonic combustors must atomize and ignite liquid fuel at 

hypersonic speeds. Little is known about fluid atomization in a supersonic cross flow 

experimentally and few methods exist to investigate this behavior numerically. In order to simulate 

this behavior, an approach must be used that naturally accounts for the multiscale nature of the 

atomization process. In this work, a five equation interface-capturing scheme is developed to solve 

the compressible multi-component Navier-Stokes equations. The gas phase is modeled as an ideal 

gas and the liquid phase is modeled using a stiffened-gas equation of state. In order to account for 

the truly multiscale nature of this fluid behavior, the governing equations are solved using the 

highly efficient Parallel Adaptive Wavelet-Collocation Method (PAWCM). The PAWCM uses 

wavelets to dynamically adapt the grid used to represent the solution, which minimizes the overall 

computational cost and allows larger simulations to be performed. Shocks and interfaces are 

captured using a modified version of the hyperbolic solver developed specifically for the PAWCM. 

                                                 
4 PhD candidate, Aerospace and Mechanical Engineering departments, Iowa State University. 
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Surface tension is modeled using a continuous surface approach. One and two-dimensional 

simulations are used to demonstrate the method’s capabilities. 

3.1 Introduction 

The reliable atomization and ignition of liquid fuel injected into supersonic combustors is a 

significant limitation to Scramjet development. Little is known about the primary and secondary 

breakup processes in supersonic crossflows. A large body of literature exists that describes the 

breakup behavior of liquid droplets (secondary atomization) after being impacted by a shock wave 

to induce a strong shear [1]. However, most of the work uses shock waves that still induce subsonic 

post-shock velocities. 

In shock tube experiments a droplet is impacted by a shock wave that passes over the droplet 

and causes minimal deformation during this interaction. The advantage of this approach is that a 

drop can be subjected to a step change in ambient flow that is nearly uniform over its surface[2]–

[13]. An unequal pressure distribution forms around the droplet after the shock passes and deforms 

the initially spherical droplet. Interfacial tension and viscous forces resist this deformation and it 

is the competition between these resistive and pressure forces that determines the evolution of the 

droplet. Typical breakup modes include vibrational, bag, multimode, sheet-thinning, and 

catastrophic. 

The use of direct numerical simulations has become more common in the last two decades to 

investigate droplet breakup and atomization behavior. Zaleski et al. [14] performed 2D water 

column simulations of the Navier-Stokes equations with constant density and viscosity. Igra and 

Takayama [15] showed experimentally that breakup behavior is similar between a 2D water 

column and a spherical droplet. Han and Tryggvason [16], [17] solved the axi-symmetric Navier-

Stokes equations in order to simulate a spherical droplet fragmentation with a density ratio of 10. 
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Transitional Weber numbers (𝑊𝑒) did not match experiments and it is thought that this may be 

because most experiments are conducted at much higher density ratios. Aalburg et al. [18] 

expanded upon this work to simulate drop deformation at higher density ratios but did not have 

sufficient resolution to simulate breakup. 

Quan and Schmidt [19] developed a 3D code with compressibility effects in ambient gas. 

Chang and Liou [20] developed a stratified flow model that can simulate the interaction of a shock 

wave with a liquid drop. Initial results indicate good agreement with experimental results of 

Theofanous et al. [13] at high Mach numbers. Khare et al. [21] used a volume of fluid method to 

perform full 3-D simulations using the incompressible multi-fluid Navier-Stokes equations and 

reproduced the transitional Weber numbers reasonably well.  

Most of the studies on secondary atomization focus on the breakup of a spherical droplet from 

a shock wave (experimental) or impulsively started flow (numerical). While most of the numerical 

simulations of interfacial flows have been incompressible, there have been a few studies[22]–[24] 

done in compressible flows. Other approaches neglect surface tension and analyze shock wave 

interactions with either bubbles[25]–[27] or the early stages of droplet deformation[28]. 

The breakup of droplets is a truly multiscale behavior and requires a multiscale approach. The 

Parallel Adaptive Wavelet-Collocation Method[29]–[31] is an intrinsically multiscale numerical 

approach that uses wavelets to determine which points are necessary to represent a solution within 

some a priori prescribed accuracy. In this work, a compressible multiphase interfacial flow 

methodology is developed within the PAWCM framework. 

This paper is organized as follows. First the governing equations used to model the multiphase 

flow are described in detail. Second, the numerical method used to implement the system of 
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equations are described. Then some results demonstrating the method’s capabilities are presented, 

followed by conclusions. 

3.2 Multi-fluid compressible flow model  

Multi-fluid/multi-component simulations are modeled using the quasi-conservative, volume 

fraction approach Navier-Stokes equations, 

𝜕(𝜌ଵ𝛼ଵ)

𝜕𝑡
+ ∇ ∙ (𝜌ଵ𝛼ଵ𝒖) = 0 

(3-1) 

𝜕(𝜌ଶ𝛼ଶ)

𝜕𝑡
+ ∇ ∙ (𝜌ଶ𝛼ଶ𝒖) = 0 

(3-2) 

𝜕(𝜌𝒖)

𝜕𝑡
+ ∇ ∙ (𝜌𝒖𝒖 + 𝑝𝑰 − 𝑻) = 𝒇 

(3-3) 

𝜕𝜌𝑒௧

𝜕𝑡
+ ∇ ∙ ൫(𝜌𝑒௧ + 𝑃𝑰)𝒖 − 𝑻. 𝒖൯ = 𝒇 ∙ 𝒖 

(3-4) 

𝜕𝛼ଵ

𝜕𝑡
+ ∇𝛼ଵ𝑢 = 𝛼ଵ∇. 𝑢, 

(3-5) 

where 𝜌 is the total density, 𝒖 is the vector of velocity components, 𝑝 is the pressure, 𝑒௧ is the total 

energy, 𝛼 is the volume fraction, 𝑰 is the identity tensor and 𝑻 is the stress tensor defined as, 

𝑻 = 2𝜇 ൬
1

2
(∇𝒖 + (∇𝒖)𝑻) −

1

3
(∇ ∙ 𝒖)𝑰൰  

(3-6) 

where 𝜇 is the shear stress. This coefficient is calculated using the mixture rule  𝜇 = 𝛼ଵ𝜇ଵ +

𝛼ଶ𝜇ଶ[27]. The current focus is on viscous effects and terms associated with thermal diffusion are 

ignored. Additionally 𝜇ଵ and 𝜇ଶ are modeled as constants so that 𝜇 is a function of composition 

only. Both assumptions, however, can be lifted, when appropriate terms are used to calculate 

temperature[32]. 



www.manaraa.com

60 
 

All equations are written in conservative form except the advection equation for the volume 

fraction. It has been shown that this equation is needed to calculate and preserve pressure 

equilibrium at the fluid interface and including the divergence term maintains 0 ≤ 𝛼ଵ ≤ 1.  

This set of equations is written for two fluids, but it is easily extendable to account for more 

than two fluids by adding a density and advection equation. Moreover, these equations conserve 

the mass of each fluid and the energy of the system and they do not generate spurious oscillations 

at the interface (necessary criteria for a multiphase simulation).   

Table 3-1 Parameters used in stiffened gas EOS[27]. 

Fluid 𝜌[𝑘𝑔/𝑚ଷ]  𝛾 𝜋ஶ[𝐺𝑃𝑎] 𝑐[𝑚/𝑠] 

Air 1.205 1.4 0 343 

Water 

Helium 

998 

0.166 

4.4 

1.67 

1 

0 

1450 

1008 

 

The system of equations is closed using the stiffened gas equation of state (EOS) to account 

for different phases in the flow, 

𝑝 + 𝛾Πஶ = (𝛾 − 1) ൬𝜌𝑒௧ −
1

2
𝜌𝒖𝒖൰, 

(3-7) 

where 𝛾 is the multicomponent ratio of specific heats and Πஶ(𝑃𝑎) is the multicomponent fitting 

parameter for different components in the flow.Following the mixture rules in the interface 

capturing method (𝜌ଵ𝛼ଵ + 𝜌ଶ𝛼ଶ = 𝜌, 𝛼ଵ + 𝛼ଶ = 1), 𝛾 and Πஶ are found using the following: 

1

𝛾 − 1
=

𝛼ଵ

𝛾ଵ − 1
+

1 − 𝛼ଵ

𝛾ଶ − 1
 

(3-8) 

𝛾Πஶ

𝛾 − 1
=

𝛼ଵ𝛾ଵ𝜋ଵ
ஶ

𝛾ଵ − 1
+

(1 − 𝛼ଵ)𝛾ଶ𝜋ଶ
ஶ

𝛾ଶ − 1
 

(3-9) 
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where values of 𝛾 and 𝜋ஶ are listed in Table 1 for air, water, and Helium. The speed of sound is 

defined as 𝑐 = ඥ𝛾(𝑝 + 𝜋ஶ)/𝜌. 

Any additional forces being applied to the fluid are contained in 𝒇. In multiphase flows, one 

of the most important forces is the capillary force. Thus, the corresponding force and power terms 

are added to the system of equations using a continuum surface force model (CSF), 

𝒇 = −𝜎𝜅∇𝛼ଵ (3-10) 

𝒇. 𝒖 = −𝜎𝜅𝒖 ∙ ∇𝛼ଵ, (3-11) 

where 𝜎(𝑁/𝑚) is the surface tension and 𝜅 is the curvature of the interface for the higher density 

fluid (in this case 𝛼ଵ). The curvature 𝜅 is calculated using  

𝜅 = ∇ ∙ 𝒏, (3-12) 

where 𝒏 =
∇ఈభ

|∇ఈభ|
 is the normal vector. Details on normal vector calculations are described in detail 

in the next section.  

Finally, the above equations are non-dimensionalized using a reference density, speed of 

sound, and length scale. This introduces two non-dimensional parameters, namely the acoustic 

Reynolds and Weber numbers: 

𝑅𝑒௔ = 𝜌଴𝑐଴𝑙/𝜇଴ (3-13) 

𝑊𝑒௔ = 𝜌଴𝑐଴
ଶ𝑙/𝜎. (3-14) 

3.3 Numerical Implementation  

The Parallel Adaptive Wavelet Collocation Method (PAWCM), makes use of second 

generation wavelets to dynamically adapt the grid to localized structures in the flow in time and 

space[29]–[31]. This approach allows the solution to be approximated using a subset of the points 
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that would normally be used with a uniform grid scheme. Dynamic domain partitioning is used for 

parallel computations and the method has been shown to scale well on up to 2048 processors[31]. 

In this paper, a second order finite difference discretization for the spatial terms are used along 

with a third order Total Variation Diminishing (TVD) Runge-Kutta (RK) time integration scheme. 

A modified version of the original hyperbolic solver developed for the PAWCM[33] that uses a 

TVD flux limiter to add artificial viscosity to the regions where a lower order flux is required. 

Therefore, for the tests that include sharp density and pressure jumps (e.g. shock waves), the order 

of accuracy drops to between first and second order in those regions. Similar to flux terms, the 

source terms are discretized in a consistent form. 

3.3.1 Interface capturing model 

For simplicity, both the shock and fluid interface are captured over several cells using an 

interface/shock capturing approach. The diffusive nature of the numerical scheme requires the 

fluid interface to be steepened for certain variables. After the fluid evolution is solved for in 

physical time, the interface is steepened by iterating in false time 𝜏.  

The employed interface steepening technique uses a combination of interface and density 

sharpening to minimize the thickness of the numerically diffused interface. This approach uses a 

semi-conservative level set function where the volume fraction of the liquid phase indicates the 

interface.  This function takes the values zero or one on either side of the interface with 𝛼ଵ = 0.5 

indicating the actual interface location. The boundary between immiscible materials is modeled 

by the smooth variation of 𝛼ଵ between these limits. Following the approach outlined by Shukla et 

al. [26], the interface function is steepened in false time using a compression step  

ௗఈభ 

ௗఛ
= 𝒏 ∙ ∇൫𝜖௛(𝒏 ∙ ∇𝛼ଵ) − 𝛼ଵ (1 − 𝛼ଵ )൯, (3-15) 
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where 𝒏 is the normal vector and 𝜖௛ is a length-scale on the order of the grid spacing. In this 

equation the first term on the right hand side serves as a diffusion term to maintain nonlinear 

stability and the second term steepens the interface. 

Since the density is a function of local flow conditions in compressible flows a separate 

steepening equation is required for each density equation. The approach outlined by Shukla et al. 

[26] is used to steepen the density. The compression step for the phase 1 density takes the form 

𝑑𝛼ଵ𝜌ଵ

𝑑𝜏
= 𝐻𝒏 ∙ ൣ∇൫𝜖௛. ∇(𝛼ଵ𝜌ଵ)൯ − (1 − 2𝛼ଵ)∇(𝛼ଵ𝜌ଵ)൧ 

(3-16) 

The same approach is used for phase 2. The term H is a smoothed Heaviside function 

𝐻 = tanh ൤ቀ
(ఈభ(ଵିఈభ)

ଵ଴షమ
ቁ

ଶ

൨. 
(3-17) 

This function localizes the compression of density to the interface region. The interface function 

and the density for each phase are steepened after each timestep. A single steepening iteration is 

used after each step in physical time. A false time CFL condition is established to calculate the 

false time step size ∆𝜏 = 𝐶𝐹𝐿ఛ ∙ ℎ, where h is the smallest grid size in the domain and 𝐶𝐹𝐿ఛ is the 

steepening 𝐶𝐹𝐿 number. Values for this parameter vary between 0.1 and 0.5 depending upon the 

desired steepness. 

3.3.2 Normal vector calculation  

Normal vectors are required to evaluate the right-hand side of the steepening equation and 

calculating the surface tension force. In both shock and interface capturing schemes, the 

representation of a sharp physical interface is most realistic if the interface thickness is minimized. 

This corresponds to making 𝜖௛ as small as possible during the compression step. However, 

accurate computation of the gradients of the interface function, 𝛼ଵ, particularly those that define 

normal, are well-behaved only if 𝛼ଵ is sufficiently resolved with the computational mesh. 
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Otherwise, numerical artifacts appear and quickly disrupt the attractive properties of the 

compression scheme. This is in contrast with the modeling objective of maintaining a sharp 

interface. In order to address this issue, Shukla et. al.[26] propose an auxiliary function  

𝜓 =
αଵ

ఉ

αଵ
ఉ

+ (1 − 𝛼ଵ)ఉ 
 ,     𝛽 < 1 

(3-18) 

that is more continuous across the fluid interface and provides gradients that contain less numerical 

noise. This function can be used to calculate the same normal vector values as would be calculated 

using 𝛼ଵ, but uses smoother gradients. The normal vector is then represented as 

𝒏 =
∇ఈభ

|∇ఈభ|
=

∇ట

|∇ట|
  . (3-19) 

In this function a small value of 𝛽 alleviates the problems associated the steep gradients of 𝛼ଵ 

because the width of the hyperbolic tangent profile for 𝜓 is 1/𝛽 times that of 𝛼ଵ. In this work, 𝛽 =

 0.1 is usually sufficient to provide smooth and well-defined normal vectors. 

An additional advantage of using the smoother function 𝜓 to calculate the normal vectors, 

instead of 𝛼ଵ, is that the curvature 𝜅 contains less noise after calculating a second derivative with 

respect to 𝜓. This approach eliminates the need to filter oscillations in the curvature retroactively.  

3.4 Numerical Results  

To show the robustness of the proposed method to solve compressible multiphase flows, 1-D 

and 2-D simulations have been performed. For brevity, only five test problems are contained here. 

Each problem has its own unique properties that assess the performance of the numerical method.  

3.4.1 1 D Advection of an isolated multiphase interface 

The advection of an isolated water/air interface under atmospheric pressure in a periodic 

domain is a simple test that determines whether the numerical method produces any spurious 
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oscillations at the fluid interface for pressure and velocity[27]. These oscillations, which appear 

initially in pressure terms (𝑂(10ି଺) to 𝑂(10ିଵ)), may occur when the interface capturing method 

is not implemented correctly and/or the conservative sharpening technique used is not consistent 

with the associated numerical implementation. No surface tension is used in this 1D simulation, 

but one iteration of steepening is applied with a 𝐶𝐹𝐿ఛ = 0.25. 

(a) (b) 

  
Figure 3-1 Volume fraction (a) and density (b) for the 1-D advection problem. 

(a) (b) 

  
Figure 3-2  Error in (a) pressure and (b) velocity fluctuations for the 1-D advection problem. 
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3.4.2 1D Advection of an isolated multiphase interface 

The initial condition for the problem normalized by the density and speed of sound in water 

is[27]: 

(𝛼ଵ𝜌ଵ, 𝛼ଶ𝜌ଶ, 𝑢, 𝑃, 𝛼ଵ) = ൜
(1.204 × 10ିଷ, 0,0.01,4.82 × 10ିହ, 1) − 1 ≤ 𝑥 ≤ 0

(0,1,0.01,4.82 × 10ିହ, 0)                           0 ≤ 𝑥 ≤ 1
 

(3-20) 

The solution is integrated in time with a CFL=0.5 for one period until 𝑡 = 20. The volume 

fraction and density at the end of the simulation are shown in Figure 3-1 for solutions on adaptive 

and uniform grids (200 cells). The figures show that only a minimal number of points are used 

across the interface and the adaptive method has the same solution with around half the points as 

the uniform grid. Also the method is able to handle high density ratios with minimal amounts of 

numerical diffusion. 

In order to demonstrate the magnitude of spurious oscillations at the interface, the error in 

pressure and velocity are plotted in Figure 3-2. Both uniform and adaptive grids create minimal 

oscillations (error ~𝑂(10ିଽ)), which confirms the ability of the method to minimize such errors, 

especially in an interface capturing method with high density ratios. 

(a) (b) (c) 

   

Figure 3-3 Velocity (a), pressure (b), and density (c) distributions for the 1-D Riemann 
problem. 
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3.4.3 Gas-Liquid Riemann Problem  

The second problem to validate the interface compression in 1D is the gas liquid Riemann 

problem where both shock and interface exist in the numerical domain. This problem demonstrates 

the robustness of the solver when the shock capturing and interface capturing are functioning at 

the same time. In this problem a highly compressed air on the left is adjacent to water at 

atmospheric pressure on the right. The initial condition is given by[27] 

(𝛼ଵ𝜌ଵ, 𝛼ଶ𝜌ଶ, 𝑢, 𝑃, 𝛼ଵ) =  ൜
(1.241,0,2.573,1.24)  − 1 ≤ 𝑥 < 0

(0.991,0,3.059 × 10ିସ, 0)  0 ≤ 𝑥 ≤ 1
 

(3-21) 

The simulation is performed with a base grid of 20 points with 7 levels of refinement for an 

effective uniform grid resolution of 2,560 points. Of these 2,560 points, the solution is represented 

with around 100 points. The CFL number used for the time integration is 0.5 and the simulation is 

run until 𝑡 = 0.2. Similar to the previous problem, a single step of steepening is performed in 

pseudo-time with a 𝐶𝐹𝐿ఛ number of 0.25. Figure 3-3 compares the analytical solution with the 

numerical simulation for velocity, pressure and density. The results show that the method is able 

to predict the correct location of the transmitted and reflected shocks. As should be expected, the 

pressure and velocity are constant across the interface. 

(a) (b) (c) 

   

Figure 3-4  Profile of interface function at a) the initial condition, b) after half a period, and c) 
after 10 periods. 
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3.4.4 2D Advecting Water Column  

The first two-dimensional test case is the advection of a water column. When a water column 

is advecting the spurious oscillations at the material interface can contaminate the fine flow 

features and have a negative impact on both the reliability and quality of computed solutions[27]. 

This can lead to interface deformation and mass loss. Therefore, the main challenge of this problem 

is shape preservation and mass conservation while moving. In this problem the rectangular 

computational domain is Ω = [−2.5, 2.5] × [−2.5, 2.5].  A water column of unit radius is placed 

in air with its center initially located at the origin. The rest of the initial condition for this problem, 

normalized by gas density and speed of sound, is  

𝑟 = ඥ𝑥ଶ + 𝑦ଶ 

𝛼ଵ =
1

2
൬1 + tanh ൬

𝑟 − 1

Δ
൰൰ 

(𝛼ଵ𝜌ଵ, 𝛼ଶ𝜌ଶ, 𝑢, 𝑣, 𝑃) = ൜
(10ଷ, 0,0.5, ,0.5,1)     𝑟 ≤ 1 
(0,1,0.5,0.5,1)              𝑟 > 1

 

(3-22) 

where phase 1 is water, 𝛼ଵ = 1, and phase 2 is air, 𝛼ଵ = 0. The maximum resolution grid spacing 

Δ is used in the initial condition to ensure that the initial profile always uses the same number of 

grid points across the interface. There is no molecular viscosity in this test case. 

The solution is computed on an adaptive grid with two refinement levels to provide an 

effective grid of 160 × 160 points. Figure 3-4 demonstrates the interface function profile at (a) 

the initial condition, (b) after half a period, and (c) after 10 periods of advection. The water column 

moves diagonally in a periodic domain while the grids continuously adapt to the interface location. 

Figure 3-4(a) shows that the initial profile of the interface is smeared over several points. At the 

later times shown in Figure 3-4(b) and (c), the compression scheme sharpens the interface and 

maintains a constant interface thickness of a few grid cells throughout the computations. Figure 
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3-4(c) also confirms that the method does not produce any noticeable oscillations near the 

interface. 

 
Figure 3-5  Comparison of the contour plot of interface location at initial condition (red line) 

and after 10 periods of advection (black line). 

A contour plot that illustrates the interface location (𝛼ଵ = 0.5) for the initial condition and 

after 10 periods of advection is shown in Figure 3-5. This shows that the interface size and shape 

is preserved and the mass is mostly conserved after several periods.  The black circle after 10 

periods has a smaller diameter than the initial red circle. This change is associated with the initial 

thickness of the interface being larger than the steady-state thickness that is maintained through a 

majority of the simulation. 

3.4.5 Shock water column interaction (no surface tension)  

Now we consider the interaction of a strong planar shock wave (𝑀 = 1.67) interacting with a 

water column. The shock moves to the left and has an initial position of 𝑥 = 15. The water column 

has an initial diameter 𝐷 = 2 and is located at 𝑥 = 10. The computational domain is Ω =

[−20, 20] × [−5, 5] and the equation of state parameters for water and air are given in Table. 3.1. 

The solution is computed on an adaptive grid with 2560 × 640 effective grid points. Periodic 
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boundary conditions are applied for the top and bottom boundaries. The left boundary is an outflow 

boundary. On the right boundary the post-shock condition is imposed. The Initial conditions are 

 

𝑟 = ඥ(𝑥 − 10)ଶ + 𝑦ଶ 

𝛼ଵ =
1

2
൬1 + tanh ൬

𝑟 − 1

2𝜖௛
൰൰ 

(𝛼ଵ𝜌ଵ, 𝛼ଶ𝜌ଶ, 𝑢, 𝑣, 𝑃) = ൜
(10ଷ𝛼ଵ, (1 − 𝛼ଵ), 0,0,0.714)    𝑥 < 10
(0, 2.111, −0.892,0 , 2.142)     𝑥 > 10

 . 

 

(3-23) 

Figure 3-6  shows the early interaction of the shock wave with the water column. The results 

agree qualitatively with the results of Igra et al. [34]. The incident shock and the subsequent wave 

systems in the wake of the deforming cylinder are visualized using numerical Schlieren images of 

the gas phase density (defined |∇𝜌ଶ|) in the top portion of each figure. The bottom of each figure 

shows the dynamically adaptive grid colored by pressure.  

Transmitted and reflected shocks are generated from the impact of the incident shock with the 

water column. The interaction of these waves with the interface leads to interfacial instabilities at 

the water-air interface and the wake structure behind the water column.  There is a high-pressure 

region associated with the forward stagnation point, behind the reflected wave. A transition from 

a shock reflection to a Mach reflection happens at a critical angle behind the water column. This 

transition leads to maximum drag experienced by the column[28]. This phenomena has been 

reported in the literatures for both cylinders and spheres[34]. High pressure at the rear stagnation 

point is generated due to the convergent Mach stems behind the column. 
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 (a) 

 

 

 (b) 

 

 

 (c) 

 

 

 (d) 

 

 

 (e) 

 

 

 (f) 

 

 

 (g) 

 

 

 (h) 

 

 

Figure 3-6 Numerical Schlieren images (top) and dynamic adaptive grids colored by pressure 
contours (bottom) of a shock wave passing through a liquid droplet at 𝑡 = (a) 0.00 (b) 4.8 (c) 
7.5 (d) 9.00 (e) 12.00 (f) 14.80 (top to bottom, left to right). 
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It can be seen that the grid is localized to regions of the flow that have localized structures 

necessary of increased resolution. The results demonstrate that the dynamic grid adaptation used 

in the PAWCM approach makes the simulation of truly multiscale behavior such as this more 

computationally feasible for large-scale simulations. 

 

Figure 3-7 Kinetic energy versus time for a period of oscillation. 

 

Figure 3-8 Grid adaptation during one period for the oscillating ellipse problem with 5 levels 
of adaptation. 
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3.4.6 Oscillating Ellipse  

The last problem in this paper is an oscillating ellipse shaped water droplet with surface 

tension present. The initial pressure is uniform atmospheric pressure everywhere with zero 

velocity. The surface tension forces deform the shape into a neutral shape (preferably a circle), 

because the potential energy (kinetic energy) becomes a minimum (maximum) in that phase (𝑡 =

𝑇/2). The inward acting momentum in the 𝑥-direction causes the ellipse to elongate in the 𝑦-

direction (𝑡 = 3𝑇/2). The same events move the ellipse interface back to the original shape (𝑡 =

𝑇).  In order to illustrate the oscillation behavior, the globally integrated compressible kinetic 

energy  

𝐾𝐸 = ඵ(𝜌𝑢ଶ + 𝜌𝑣ଶ)𝑑𝐴 
(3-24) 

is evaluated at each time step. Figure 3-7 plots the KE over a single period T. It has been shown 

that the non-dimensional time period it takes for an ellipse (𝑥ଶ/𝑎ଶ + 𝑦ଶ/𝑏ଶ = 1) to move back to 

the original shape after being disturbed by the surface tension forces is[22]: 

𝑇௘௫௔௖௧ = 2𝜋
ඨ

𝑊𝑒 ቀ1 +
𝜌ଶ

𝜌ଵ
ቁ 𝑅ଷ

6
 

(3-25) 

where 𝑅 = √𝑎𝑏. For 𝑊𝑒 = 1, density ratio of 1000, and 𝑅𝑒 = 100 with 𝑅 = ඥ3/5 × 5/3  for the 

ellipse, the period of oscillation becomes 𝑇௘௫௔௖௧ =  81.15. The simulation shows that this time is 

roughly about 𝑇௡௨௠௘௥௜௖௔௟ ≈ 86.5. It is suspected that the difference exists because secondary 

oscillation modes also exist. Further details on these other modes can be found in Ref. [22].  

Figure 3-8 shows how the grid adapts to the droplets evolution with time. The high localization 

of the grid to the surface makes the PAWCM method highly suitable to capturing the multiscale 

nature of atomization processes.  
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3.4.7 Shock water column interaction with surface tension effect 

A Mach 3 shock in air impacting a water column with unity radius is simulated.  The domain 

is [5, 10] × [−6,6] and extrapolation boundary conditions are applied on all four boundaries. The 

non-dimensional initial conditions are given by 

൫𝜌௟𝛼௟ , 𝜌௚𝛼௚, 𝑢, 𝑣, 𝑝൯ = ൜
(0,3.857,2.629, 0,10,333)    𝑥 < −1

(10𝛼௟ , (1 − 𝛼௟), 0,0,1 + ∆𝑝)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Where 𝛾௟ = 4.4, 𝜋ஶ,௟ = 60, , 𝛾௚ = 1.4 and 𝜋ஶ,௚ = 0 and  

𝛼௟ = 1 − 0.5 ൬1 + tanh ൬
𝑟 − 0.5

4𝜖௛
൰൰ 

With 𝑟 = ඥ𝑥ଶ + 𝑦ଶ and 𝜖௛ = 0.72ℎ. The acoustic Weber number (𝑊𝑒௔)  is set to 0.75,1.5, 

3  making the initial pressure jump distribution ∆𝑝 = 𝛼௟/0.5𝑊𝑒௔ for the simulation with surface 

tension. This corresponds to a physical Weber number of 20, 40, 160 based on the droplet diameter 

and post-shock velocity. All simulations were performed with a CFL of 0.6 with ten curvature 

filtering iterations. Three steps of interface compression were performed per physical time step 

with 𝐶𝐹𝐿ఛ of 0.07. 

Figure 3-9 shows the early interaction of the shock wave with the water column for three cases 

with Weber numbers of 20, 40, 160, 320 and the case with no surface tension effect. In this figure 

the interface dynamics and the incident shock and the subsequent wave systems in the wake of the 

deforming cylinder are visualized using numerical Schlieren images in the top portion of each 

figure. The bottom of each figure shows the dynamically adaptive grid colored by pressure. The 

surface tension force actively combat the deformation of droplet as evidenced in this figure. The 

smaller the Weber number is the larger the effect of surface tension force will be. This effect is 

more obvious on the top and bottom of the water column where the curvature is larger which leads 
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to the larger surface tension effect. In this area the surface tension effect is combating the 

deformation under the effect of recirculation of the flow around the water column. 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

  

Figure 3-9 Effect of surface tension on the evolution of water column interface (a) 𝑊𝑒 = 20 (b) 
𝑊𝑒 = 40 (c) 𝑊𝑒 = 160 (d)𝑊𝑒 = 320 (f) No surface tension (𝑊𝑒 = ∞) 

Figure 3-10 depicts the evolution of interface under the effect of shock wave when the Weber 

number is 40. After the incident shock impacts the water column the deformation starts. Because 

the density ratio is only 10 instead of 1000, therefore, the inertial force of the water column is 100 

times smaller than the actual water column.  
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(a) 

 

(e) 

 
(b) 

 

(f) 

 
(c) 

 

(g) 

 
(d) 

 

(h) 

 
Figure 3-10 Evolution of water column interface with We=40 under the effect of incident shock 
with Mach=3   
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The shock wave is transmitted to the droplet and the pressure wave goes back and forth inside 

the droplet with a separation point forming in front of the droplet. The recirculation of the air in 

the wake elongates the water column which leads to the bag formation. The bag gets thinner and 

finally it breaks into two droplets. At the breakup location a reflected shock forms and propagates. 

3.5 Conclusion 

A compressible multiphase flow solver with surface tension was developed for the Parallel 

Adaptive Wavelet-Collocation Method. One-dimensional test problems show the ability to resolve 

both shock and interfaces over just a few points. Spurious oscillations in velocity and pressure are 

minimal across the interface. A two-dimensional test case for an advecting water column in air 

demonstrates the method’s ability to maintain a steep fluid interface for long durations. Subsonic 

shock interaction with water column shows the ability of the code to capture the shock and 

interface dynamics at the same time. An oscillating ellipse with surface tension was tested and the 

oscillation period matches the theoretical oscillation period reasonably well. Finally, the solver is 

applied to a supersonic shock-droplet interaction in the presence of surface tension force. For all 

cases, the grid dynamically adapts to the solution illustrating the capability of the approach to 

handle large problems with a large range of scales. 
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4. CHAPTER 4.   ON THE EXTENSION OF SLAU SCHEME TO COMPRESSIBLE TWO-

FLUID MODEL 

 

A paper Published in 53rd AIAA Aerospace Sciences Meeting, 

AIAA SciTech Forum, (AIAA 2015-0285) 

Zahra Hosseinzadeh Nik8, Jonathan D. Regele.9, Alberto Passalacqua10 

Abstract 

This paper describes the extension of a simple low-dissipation AUSM (SLAU) scheme to a 

six-equation compressible two-fluid model for gas/liquid flow. This is the latest version of the 

AUSM-family schemes with a new numerical flux function. This scheme features low dissipation 

without any tunable parameters in low Mach number regimes while maintaining the robustness of 

the AUSM-family fluxes at high Mach numbers with a very simple formulation. The accuracy of 

the method is tested with a well-known two-fluid air/water flow benchmark problem and the 

results were compared with the two-phase AUSM+ and AUSM+-up schemes. 

4.1 Introduction 

Accurate methods to simulate multiphase flows are necessary to produce models for 

engineering applications. Modern commercial solvers employ a range of methods, such as the 

mixture model, volume-of-fluid model, or the Euler-Euler two-fluid approach [1], [2].These 

approaches are generally pressure-based and assume incompressibility of the liquid phase. 

However, because of their limited accuracy, as well as inability to model strong compressibility 

effects, the current generation of two-phase flow schemes are density-based. Furthermore, these 

                                                 
8 Graduate Research Assistant of Aerospace and Mechanical Engineering, Iowa State University. 
9 Assistant Professor of Aerospace Engineering, Iowa State University. 
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algorithms can be problematic because the governing equations contain non-hyperbolicity, non-

conservative form, and numerical stiffness from the large disparity in fluid properties and flow 

scales [3].On the other hand, in the density based solvers, either for single or two-phase flow, 

special care must be taken to prevent slow or stalled convergence, which can occur from the large 

ratio of characteristic speeds and errors arising from excessive amounts of numerical dissipation 

[4]. 

The AUSM (Advection Upstream Splitting Method), originally developed by Liou and 

Steffen [5] and its variant AUSM-family schemes are known to be excellent at resolving flow 

discontinuities while remaining computationally inexpensive and not requiring characteristic 

analysis or field by field decomposition [6].Thus, they have been widely used as one of the 

standard methods of compressible CFD algorithms, especially when dealing with non-hyperbolic 

models, or with models whose mathematical properties depend closely on closure laws as in two-

phase flow. This scheme has been employed successfully by several authors to simulate multiphase 

flow in different test cases [7]–[11]. Recently, all-speed versions of the AUSM-family of schemes 

have been developed that can be used for flows at a variety of Mach numbers[12]. However, these 

schemes include at least one problem-dependent parameter, such as a cut-off Mach number. This 

parameter should be a very small and non-zero number for very low Mach number flows. This 

approach can be problematic since there is no standard method to define the cut-off Mach number, 

especially when no uniform flow is present [4], [13]. 

Recently, a new, simple low-dissipation numerical flux function of the AUSM-family has 

been developed [4], [13] for all speeds, called the simple low-dissipation AUSM (SLAU). In 

contrast with previous all-speed schemes, the simple low-dissipation AUSM features low 

dissipation without any tunable parameters in a low Mach number regime while maintaining the 
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robustness of the AUSM-family fluxes against shock-induced anomalies at high Mach numbers 

(e.g., carbuncle phenomena). Furthermore, the simple low-dissipation AUSM has a simpler 

formulation than other all-speed schemes [14]–[16]. 

The objective of this study is to develop a simple two-phase low-dissipation AUSM-family 

(TSLAU) scheme, which is free from reference parameters, such as a cutoff Mach number. This 

paper will be organized as follows. First, the system of equations for a single-pressure two-fluid 

model is described. Second, the spatial discretization of these equations using the two-phase 

AUSM+[7], modified two phase AUSM+-up, [8], [9], [12] and our new TSLAU scheme is 

elucidated. Third, the details about the temporal discretization, source terms, equations of state, 

and primitive variable deduction procedures are explained. Finally, the method’s capabilities are 

evaluated using a well-known benchmark problem.  

4.2 System of Equations  

In this paper, we will concentrate on the numerical algorithms for compressible two-fluid 

equations in which the fluids are assumed to be inter-penetrating, non-homogeneous and non-

equilibrium. In other words, each fluid has its own velocity and temperature field at a given 

location, but all fluids share the same pressure, such that 𝑝௟ = 𝑝௚ where 𝑝௞ is the pressure of the 

k୲୦ phase and 𝑙 and g denote the liquid and gas phases, respectively. The system of Euler’s 

equations that describe the one-dimensional fluid behavior can be written in vector form as  

𝜕𝑼𝒌

𝜕𝑡
+

𝜕𝑭𝒌

𝜕𝑥
= 𝑪𝒌

𝒏𝒗 + 𝑺𝒌 
(4-1) 

where 𝑼 is the vector of conservative variables, 𝑭 is the flux vector, 𝑪𝒌
𝒏𝒗 is the vector of non-

viscous differential source terms, and 𝑺𝒌 is the vector of the source term containing all the non-

differential terms. These are defined [7]  
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𝑼𝒌 = (𝛼௞𝜌௞ 𝛼௞𝜌௞𝑢௞ 𝛼௞𝜌௞𝐸௞)் 

𝑭𝒌 = (𝛼௞𝜌௞𝑢௞ 𝛼௞𝜌௞𝑢௞
ଶ + 𝛼௞𝑝 𝛼௞𝜌௞𝑢௞𝐻௞)் 

𝑪𝒌
𝒏𝒗 = ൬0 𝑝

𝜕𝛼௞

𝜕𝑥
+ 𝐹௞

௡௩ −𝑝
𝜕𝛼௞

𝜕𝑡
+ 𝑢௜௡௧𝐹௞

௡௩൰
்

 

𝑺𝒌 = (0 𝛼௞𝜌௞𝑔௫ + 𝐹௞
஽ 𝛼௞𝜌௞𝑢௞𝑔௫ + 𝑢௜௡௧𝐹௞

஽)் 

 

 

(4-2) 

 

where 𝛼௞ is the volume fraction, 𝜌௞ the density, 𝑢௞ the velocity, 𝐸௞ the total energy, 𝐻௞ the total 

enthalpy of the phase 𝑘,  𝑝 the pressure, 𝐹௞
௡௩ the non-viscous interfacial force (such as interfacial 

pressure force), 𝑢௜௡௧ the interphase velocity, 𝑔௫ the projection of the gravity vector onto the x-

coordinate axis, and 𝐹௞
஽ the interphase drag force. The spatial discretization of this system of 

equations has been done using three finite volume schemes, namely, two-phase AUSM+, AUSM+-

up and the new TSLAU scheme.   

4.3 AUSM+ and AUSM+-up Schemes for Compressible Two-phase Flow 

The two-fluid AUSM-family scheme is based on a decomposition of the flux into a convective 

term associated with the mass flux and a pressure term. Thus, the numerical flux at the interface is 

computed using 

𝑭௞
∗ = 𝑭௞

∗஼ + 𝑭௞
∗௣ (4-3) 

The convective fluxes at the interface can be defined by simple upwinding based on the sign 

of 𝑚̇௞
∗  as 

𝑭௞
∗஼ =

1

2
𝑚̇௞

∗ [(𝝍௞)௅ + (𝝍௞)ோ] +
1

2
|𝑚̇௞

∗ | [(𝝍௞)௅ − (𝝍௞)ோ] 
(4-4) 

where (𝝍௞)௅/ோ = [1 𝑢௞ 𝐻௞]௅/ோ
்   are the conv7ected variables of mass, momentum, and energy 

for each phase at the left and right nodes. The mass flux at the interface for each phase  
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𝑚̇௞
∗ = 𝑎௞

∗ ቆ(𝛼௞𝜌௞)௅

𝑀௞
∗ + |𝑀௞

∗|

2
+ (𝛼௞𝜌௞)ோ

𝑀௞
∗ + |𝑀௞

∗|

2
ቇ 

(4-5) 

is then calculated using an upwinding scheme based on the direction of the interface Mach number, 

where 𝑎௞
∗ = ඥ(𝑎௞)௅(𝑎௞)ோ  is the interface numerical speed of sound. The numerical Mach 

number, 𝑀௞
∗, at the interface is computed as a polynomial function of the left and right Mach 

numbers 

𝑀௞
∗ = 𝑓ା((𝑀௞)௅) + 𝑓ି((𝑀௞)ோ) (4-6) 

where  𝑓± are polynomial functions defined as  

𝑓±(𝑀) = ቐ

ଵ

ଶ
(𝑀 ± |𝑀|)                                               if |𝑀| ≥ 1

±
ଵ

ସ
(1 ± 𝑀)ଶ ±

ଵ

଼
(𝑀ଶ − 1)ଶ                    else              

. 
(4-7) 

The left and right Mach number (𝑀௞)௅/ோ are defined 

(𝑀௞)௅/ோ =
(௨ೖ)ಽ/ೃ

௔ೖ
∗ . (4-8) 

The pressure flux is defined 𝑭௞
௉ = [0 (𝛼௞𝑝)∗ 0]். The pressure at the interface (𝛼௞𝑝)∗ is 

defined as a weighted average of the left and right pressures 

(𝛼௞𝑝)∗ = 𝛽ା((𝑀௞)௅)(𝛼௞𝑝)௅ + 𝛽ି((𝑀௞)ோ)(𝛼௞𝑝)ோ. (4-9) 

Here 𝛽± are polynomial functions of the Mach number defined as 

𝛽±(𝑀) = ቐ

ଵ

ଶ
[1 + sign(±𝑀)]                                                if |𝑀| ≥ 1

 
ଵ

ସ
(2 ∓ 𝑀)(𝑀 ± 1)ଶ ± 𝐴𝑀(𝑀ଶ − 1)ଶ            else             

. 
(4-10) 

The coefficient A varies based upon the scheme that is used. In the original AUSM+ scheme 

𝐴 =
ଷ

ଵ଺
 and in AUSM+-up scheme 𝐴 =

ଷ

ଵ଺
(−4 + 5𝑓௔

ଶ ) . The other difference between these two 

schemes is that AUSM+-up contains additional dissipation terms for both pressure and velocity. 

The original AUSM+ scheme has mass flow rate and pressure given by Eq.((4-5) and ((4-9), 
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respectively, whereas the AUSM+-up scheme adds additional velocity, 𝐷௞
௨, and pressure, 𝐷௞

௣, 

dissipation terms such that   

𝑚̇௞
∗ = 𝑎௞

∗ ቆ(𝛼௞𝜌௞)௅

𝑀௞
∗ + |𝑀௞

∗|

2
+ (𝛼௞𝜌௞)ோ

𝑀௞
∗ + |𝑀௞

∗|

2
ቇ + 𝐷௞

௣ 
(4-11) 

(𝛼௞𝑝)∗ = 𝛽ା((𝑀௞)௅)(𝛼௞𝑝)௅ + 𝛽ି((𝑀௞)ோ)(𝛼௞𝑝)ோ + 𝐷௞
௨. (4-12) 

The addition of these terms enhances the coupling between the mass flux and pressure terms, 

suppresses oscillations, improves stability as well as convergence, and solves the problematic low 

Mach number regime behavior. These terms are expressed 

𝐷௞
௣

= ቈ−
𝑘௣

𝑓௔
∆M max(1 − 𝜎𝑀ഥଶ, 0)

𝛼ோ𝑝ோ − 𝛼௅𝑝௅

 𝑎௞
∗ ቉

௞

 
(4-13) 

𝐷௞
௨ = [−𝑘௨𝛽ା(𝑀௅)𝛽ି(𝑀ோ)𝛼𝜌തതതത(𝑓௔𝑎∗)(𝑢ோ − 𝑢௅)]௞ (4-14) 

∆M = 𝑓ା(𝑀௅) −
ଵ

ଶ
(𝑀௅ + |𝑀௅|) − 𝑓ି(𝑀ோ) +

ଵ

ଶ
(𝑀ோ − |𝑀ோ|), (4-15) 

where 𝛼𝜌തതതത and 𝑀ഥ  are the average values in the L and R states and 𝑓௔ = 𝑀଴(2 − 𝑀଴) with 𝑀଴
ଶ =

min[1, max(𝑀ഥଶ, 𝑀ஶ)] . The cut-off Mach number, 𝑀ஶ and the velocity, 𝑘௨, and pressure, 𝑘௣, 

dissipation coefficients are problem-dependent tunable parameters. These extra terms sacrifice the 

simplicity of the original AUSM-family algorithm. The SLAU scheme[4], [13], [16] overcomes 

this challenge for single phase Euler equations. However, a suitable algorithm is still needed for 

two-phase flow. In the next section we extend the SLAU all-speed scheme to two-phase flow and 

develop a TSLAU scheme of the AUSM-family. The resulting scheme is simple in form and free 

from problem-dependent parameters, such as a cut-off Mach number.  

4.4 New Numerical Flux Scheme  

As for its single phase counterpart described in Ref. [4], [13], [16], and similar to all AUSM-

family schemes, the proposed two-fluid SLAU scheme is based on a decomposition of the flux 
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appearing in Eq. ((4-1) into a convective term associated with the mass flux and a pressure term, 

such that the flux is expressed 

𝑭௞
∗ = 𝑭௞

∗஼ + 𝑭௞
∗௣. (4-16) 

The convective fluxes at the interface can be calculated as 

𝑭௞
∗஼ =

1

2
𝑚̇௞

∗ [(𝝍௞)௅ + (𝝍௞)ோ] +
1

2
|𝑚̇௞

∗ | [(𝝍௞)௅ − (𝝍௞)ோ] 
(4-17) 

where (𝝍௞)௅/ோ = [1 𝑢௞ 𝐻௞]௅/ோ
் .In the SLAU scheme [4], [13], [16], the mass flux of AUSM+ 

is replaced with the Courant–Isaacson–Rees Roe scheme’s mass flux [17].This approach modifies 

the mass flux in a proper form by using arithmetic averaged values rather than Roe averaged ones 

(see Ref. [13]). The resulting scheme achieves the accuracy of the Roe flux while keeping the 

robustness of AUSM+ against shock anomalies. In this paper, the final form of the SLAU mass 

flux is reformed for the two-fluid system. Therefore, the definition of the SLAU mass flux at the 

interface for the proposed two-phase model is expressed 

𝑚̇௞
∗ =

ଵ

ଶ
{{(𝛼௞𝜌௞𝑢௞)௅ + (𝛼௞𝜌௞𝑢௞)ோ} − |𝑢ത௞|∆(𝛼௞𝜌௞)}(1 − 𝑔) −

ఞೖ

ଶ௔ೖ
∗ ∆(𝛼௞𝑝). (4-18) 

The mean velocity, |𝑢ത|, is the phasic density weighted average velocity of left and right states 

and is defined 

|𝑢ത௞| = ቂ
ఈಽఘಽ|௨ಽ|ାఈೃఘೃ|௨ೃ|

ఈಽఘಽାఈೃఘೃ
ቃ

௞
. (4-19) 

The first term of the mass flux can be interpreted as the average of the left and right state. The 

second term, containing ∆(𝛼௞𝜌௞), is called the density difference term and captures the direct 

diffusion. The third term is denoted as the pressure difference and represents acoustic damping 

under isentropic conditions because 

∆(𝛼௞𝑝) ≈ 𝑎௞
∗ ∆(𝛼௞𝜌௞). (4-20) 
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According to Liu [18], a mass flux that contains a pressure difference term tends to exhibit 

the carbuncle in high Mach number while based on Shima et al. [4], [13] it has a favorable effect 

in stabilizing low-speed flow computations. Thus, the dissipation produced by the pressure 

difference term should be alleviated for high-speed flow computations. A simple smoothing 

function for each phase 

𝜒௞ = ൫1 + 𝑀௞
෢ ൯

ଶ
 (4-21) 

𝑀෡௞ = min ቌ1.0,
1

𝑎௞
∗

ඨ
(𝑢௞)௅

ଶ + (𝑢௞)ோ
ଶ

2
ቍ 

(4-22) 

is created that tends to zero in the supersonic regime and tends toward unity at low Mach numbers. 

This function is a two-phase extension of the smoothing function defined in Shima et al. [4], [13] 

and is used  to limit the usage of the dissipation term in Eq. (4-18) to only subsonic flows. It helps 

maintain stability and boosts the ability of the scheme to work in all speeds. As opposed to the 

definition of the pressure dissipation term used in the original AUSM+-up scheme mentioned in 

the previous section, this function is parameter independent. Furthermore, this function shows an 

asymptotic behavior against the local Mach number, whereas AUSM+-up requires a prescribed 

cut-off Mach number, 𝑀ஶ, for each particular problem. Finally, the function 𝑔 in Eq. (4-18) is 

defined  

𝑔 = − max[min((𝑀௞)௅ , 0) , −1] . min[max((𝑀௞)ோ , 0) , 1] ∈ [0,1] (4-23) 

where (𝑀௞)௅/ோ are the left and right Mach number in which the interface numerical speed of sound 

for each phase is 𝑎௞
∗ = 0.5((𝑎௞)௅ + (𝑎௞)ோ), by the definition of (𝑀௞)௅/ோ = (𝑢௞)௅/ோ/𝑎௞

∗ .  
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4.5  Temporal Discretization  

As is common with other AUSM schemes [7], [19], a simple forward-Euler method is used 

for temporal discretization of the system of equations in Eq. ((4-1) at node m 

𝑼௠
௧ା∆௧ = 𝑼௠

௧ −
∆௧

∆௫
𝑹௠

௙
+ ∆𝑡(𝑹௠

஼ + 𝑹௠
ௌ ). (4-24) 

where t and t+Δt are the current and proceeding time levels respectively. The terms 𝑹௠
஼  and 𝑹௠

ௌ  

represent the nodal residuals of the viscous differential and non-differential sources, which 

correspond to 𝑪𝒌
𝒏𝒗and 𝑺𝒌, respectively. The nodal residual of convective fluxes 𝑹௠

௙  comes from 

the difference in the inflow and outflow. The global time step Δt is determined from an assumed 

volume fraction weighted average of the acoustic type signal: 

∆𝑡௠௔௫ = 𝐶𝐹𝐿 × min
௠

ቂ∑
ఈೖ ∆௫

|௨ೖ|೘ା(௔ೖ)೘
௞ ቃ, (4-25) 

where CFL is the CFL-like number used in Ref. [19]. Typical values of the CFL number vary 

between 0.1 and 0.9.  

4.6 Source Terms 

The six-equation two-phase flow system of equations is ill-posed in the sense that it may yield 

complex eigenvalues in some parts of the solution and becomes a non-hyperbolic system. To avoid 

these problems and enforce hyperbolicity various differential regularizing terms can be added to 

the system of equations. The introduction of these terms has been justified physically in Ref.[20]–

[22]. The most important differential source term is the interfacial pressure, which is defined  

𝑝௜௡௧ = 𝑐௣ ఈ೒ఘ೒ఈ೗ఘ೗

ఈ೒ఘ೗ାఈ೗ఘ೒
൫𝑢௚ − 𝑢௟൯

ଶ
, (4-26) 

with a hyperbolicity condition of 𝑐௣ ≥ 1. The non-viscous interfacial force 𝐹௞
௡௩, which is the 

interfacial pressure correction force, is expressed 
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𝐹௞
௡௩ = (𝑝 − 𝑝௜௡௧)

డఈೖ

డ௫
. (4-27) 

The interfacial velocity, which is needed in term 𝑢௜௡௧𝐹௞
௡௩ in Eq. ((4-2), can be defined as 

𝑢௜௡௧ = 𝛼௚𝑢௚ + 𝛼௟𝑢௟. (4-28) 

As it is common in others AUSM-family schemes [7], [19], the non-differential drag and 

gravity source terms are discretized 

(𝛼௞𝜌௞𝑔௫)௠ = (𝛼௞)௠ (𝜌௞)௠𝑔௫ (4-29) 

(𝛼௞𝜌௞𝑢௞𝑔௫)௠ = (𝛼௞)௠ (𝜌௞)௠(𝑢௞)௠𝑔௫ (4-30) 

(𝐹௞
஽)௠ = ±𝐶஽൫𝛼௚൯

௠
൫1 − 𝛼௚൯

௠
൫𝜌௚൯

௠
ቀ൫𝑢௚൯

௠
− (𝑢௟)௠ቁ, (4-31) 

and 𝐶஽ is a (positive) drag coefficient. 

4.7  Equations of State and Primitive Variable Decoding 

An equation of state (EOS) is needed to determine the thermodynamic quantities for the 

density, speed of sound, specific internal energy, specific total energy and specific total enthalpy, 

and also to transform the conservative variables into primitive variables. The ideal gas law is used 

for the gas-phase EOS. The gas phase density, internal energy, and sound speed can then be 

determined via 

𝜌௚ =
𝑝

𝑅𝑇௚
 (4-32) 

𝑒௚ =
𝑅𝑇௚

𝛾௚ − 1
 

(4-33) 

𝑎௚ = ට
ఊ೒௣

ఘ೒
= ඥ𝛾௚𝑅௚𝑇௚, 

(4-34) 
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where 𝑅௚ is the specific gas constant for air and the specific heat ratio is defined as 𝛾௚. The 

liquid phase is governed by the stiffened-gas EOS where the liquid phase density, internal energy 

and sound speed are expressed 

𝜌ௗ =
𝛾௟

𝛾௟ − 1

𝑝 + 𝑝ஶ

𝐶௣೗
𝑇௟

 
(4-35) 

𝑒ௗ =
𝐶௣೗

𝑇௟

𝛾௟
+

𝑝ஶ

𝜌௟
 

(4-36) 

𝑎௟ = ඨ
𝛾௟(𝑝 + 𝑝ஶ) 

𝜌௟
= ට(𝛾௟ − 1)𝐶௣೗

𝑇௟ 
(4-37) 

with the constants, 𝛾௟  = 2.8,  𝑝ஶ = 8.5 × 10଼ Pa and 𝐶௣೗
=  4186 J/kg/K for water. 

In the case of the two-fluid model, the primitive variables  

𝑄 = [𝛼௚ 𝑢௚ 𝑢௟ 𝑝 𝑇௚ 𝑇௟]் (4-38) 

are obtained after using the temporal integration outlined previously to determine the 

conservative variables 𝑼 at the time 𝑡 + ∆𝑡. The phase velocities, total energies and specific 

internal energies can immediately be resolved [7], [19]: 

𝑢௚
௧ା∆௧ =

𝑈ଷ
௧ା∆௧

𝑈ଵ
௧ା∆௧

=
൫𝛼௚𝜌௚𝑢௚൯

௧ା∆௧

൫𝛼௚𝜌௚൯
௧ା∆௧  

(4-39) 

𝑢௟
௧ା∆௧ =

𝑈ସ
௧ା∆௧

𝑈ଶ
௧ା∆௧

=
(𝛼௟𝜌௟𝑢௟)௧ା∆௧

(𝛼௟𝜌௟)௧ା∆௧
 

(4-40) 

𝑒௚
௧ା∆௧ =

𝑈ହ
௧ା∆௧

𝑈ଵ
௧ା∆௧

−
1

2
ቆ

𝑈ଷ
௧ା∆௧

𝑈ଵ
௧ା∆௧

ቇ

ଶ

=
൫𝛼௚𝜌௚𝐸௚൯

௧ା∆௧

൫𝛼௚𝜌௚൯
௧ା∆௧ −

൫𝑢௚
௧ା∆௧൯

ଶ

2
 

(4-41) 

𝑒௟
௧ା∆௧ =

𝑈଺
௧ା∆௧

𝑈ଶ
௧ା∆௧

−
1

2
ቆ

𝑈ସ
௧ା∆௧

𝑈ଶ
௧ା∆௧

ቇ

ଶ

=
(𝛼௟𝜌௟𝐸௟)௧ା∆௧

(𝛼௟𝜌௟)௧ା∆௧
−

൫𝐸௚
௧ା∆௧൯

ଶ

2
 

(4-42) 
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EOSs are then required to determine the pressure, temperature and subsequently the void 

fractions by implicit root-finding. In the stiffened-gas model the pressure is found through the root 

of a quadratic equation [7], [19] where 

𝐴 = 𝑈ଵ
௧ା∆௧൫𝛾௚ − 1൯𝑒௚

௧ା∆௧ (4-43) 

𝐵 = 𝑈ଶ
௧ା∆௧(𝛾௟ − 1) 𝑒௟

௧ା∆௧ (4-44) 

∆= (𝛾௟𝑝ஶ − 𝐴 − 𝐵)ଶ + 4𝐴𝛾௟𝑝ஶ (4-45) 

𝑝௧ା∆௧ =
1

2
ൣ𝐴 + 𝐵 − 𝛾௟𝑝ஶ + √∆൧ 

(4-46) 

and the void fraction is defined 

𝛼௚ =
஺

௣
. (4-47) 

The temperature is explicitly defined from the internal energy of each phase 

𝑇௚
௧ା∆௧ =

𝛾௚ − 1

𝑅௚
𝑒௚

௧ା∆௧ 
(4-48) 

𝑇௟
௧ା∆௧ =

ఊ೗௘೗
೟శ∆೟

ቂ(ఊ೗ିଵ)
೛ಮ

೛శ೛ಮ
ାଵቃ஼೛೗

. (4-49) 

4.8 Results and Discussions  

We now present the results of a test problem that demonstrates the method’s ability. For this 

study we focused on Toumi’s shock-tube problem [23], [24] in which the liquid phase is water, 

governed by the stiffened gas EOS, and the gas phase is air, governed by the ideal gas law. This 

test case is commonly used [7], [19], [23], [24] to test the robustness of an algorithm to handle 

shock waves with a pressure magnitude on the order of 10଻ Pa. In this case, two shock waves and 

two expansion fans are generated by the system that are challenging to capture numerically and 

highlight the effects of the different models and model parameters. At the initial state, we have 

two different mixtures of water and air on either side of a diaphragm located at x = 5 inside a 
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domain 𝑥 ∈ [0, 10]. Thus, the initial condition can be characterized by the two different primitive 

states  

𝑄௅ =  [0.25 0 𝑚/𝑠 0 𝑚/𝑠 2 × 10଻𝑃𝑎 308.15 𝐾 308.15 𝐾]் 

𝑄ோ =  [0.1 0 𝑚/𝑠 0 𝑚/𝑠 1 × 10଻𝑃𝑎 308.15 𝐾 308.15 𝐾]். 

The transient behavior begins after removing the membrane at 𝑡 = 0. Since, there is no 

analytical solution to this test case, it is common [2], [7], [19] to perform a grid convergence study 

in order to determine if the structures are captured properly. For this test case, grids ranging from 

200 to 10,000 nodes were tested. The two-phase AUSM+, AUSM+-up and TSLAU schemes were 

used for comparison. Each model was run until t=0.006 s with 𝑐௣ = 2.0 and 𝐶𝐹𝐿 = 0.1. The 

modified low-Mach model in AUSM+-up is used with 𝑘௨ = 1, 𝑘௣ = 1 and 𝑀ஶ = 10ିସ. 

Figure 4-1 illustrates the results for gas and liquid velocities for the two-phase AUSM+, 

AUSM+-up and TSLAU schemes. As noted in Ref. [7] and [8]the eigenvalues include one pair of 

pressure/density waves, one pair of pressure/void waves, and two convective waves. Therefore, 

Fig. 1 shows five constant states, separating two expansion waves and two compression waves. 

The strongest expansion wave propagates to the left in the high-pressure region, the right-most 

shock wave propagates to the right in the low-pressure region, and contact-like waves exist in 

between these two structures. Finer grid resolution creates more distinct constant states and coarser 

grid resolution generates more smoothed profiles. For low resolution cases it is difficult to see the 

constant state located just to the right of 𝑥 = 5. Only for a resolution 𝑁 ≥ 3200 does it become 

clear that this is another constant state region.  
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Two-phase AUSM+ scheme 

(a) (b) 

  
Two-phase AUSM+ -up scheme 

(c) (d) 

  
TSLAU scheme 

(e) (f) 

  
Figure 4-1 Two-Fluid shock tube problem: grid convergence with each scheme for gas and liquid 
velocities 

0 2 4 6 8 10
0

20

40

60

80

100

120

x, m

G
as

 V
el

oc
it

y

 

 

N=200
N=400
N=800
N=1600
N=3200
N=5000
N=10000

0 2 4 6 8 10
0

2

4

6

8

10

12

x, m

L
iq

u
id

 V
el

oc
it

y

 

 

N=200
N=400
N=800
N=1600
N=3200
N=5000
N=10000

0 2 4 6 8 10
0

20

40

60

80

100

x, m

G
as

 V
el

oc
it

y

 

 

N=200
N=400
N=800
N=1600
N=3200
N=5000
N=10000

0 2 4 6 8 10
0

2

4

6

8

10

12

x, m

L
iq

u
id

 V
el

oc
it

y

 

 

N=200
N=400
N=800
N=1600
N=3200
N=5000
N=10000

0 2 4 6 8 10
0

20

40

60

80

100

x, m

G
as

 V
el

oc
it

y

 

 

N=200
N=400
N=800
N=1600
N=3200
N=5000
N=10000

0 2 4 6 8 10
0

2

4

6

8

10

12

x, m

L
iq

u
id

 V
el

oc
it

y

 

 

N=200
N=400
N=800
N=1600
N=3200
N=5000
N=10000



www.manaraa.com

95 
 

Figure 4-1(a) and (b) shows that for all grid resolutions the standard two-phase AUSM+ 

scheme exhibits large overshoots at the shock wave and contact discontinuities. The results for the 

modified AUSM+-up and the new TSLAU (Figure 4-1 (c)-(f)) show that both of these schemes are 

able to capture the shock and expansion profile sharply while minimizing overshoots and 

oscillations. These results are consistent with the Paillere et al. [7] and Chang and Liou [8], [10]. 

(a) (b) 

(c) (d) 

Figure 4-2  Profile of (a) gas volume fraction, (b) Pressure, (c) gas temperature (d) liquid 
temperature for two-phase AUSM+, AUSM+-up and TSLAU. 

 

In order to better compare the three methods, Figure 4-2 shows the profile of the (a) gas 

volume fraction, (b) pressure, (c) gas temperature and (d) liquid temperature for a grid size of 200. 
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The shock capturing behavior is easier to follow in pressure and temperature profiles (Figure 4-2 

(b)-(d)). These figures show that the original AUSM+ has a strong overshoot at the shock location  

(𝑥 = 8) while AUSM+-up and TSLAU minimize this overshoot through the introduction of the 

pressure and velocity dissipation terms that better couple the pressure and mass flux. However, the 

AUSM+-up in which the dissipation coefficients and cut-off Mach number are tunable, has a 

smoother shock in comparison with the parameter free TSLAU scheme. In fact, in the AUSM+-up 

scheme these coefficients need to be tuned for each problem to achieve a favorable behavior while 

TSLAU provides excellent results without any manipulations. The figures also show that the 

oscillations at the expansion (located at 𝑥 = 2.5) are reduced in the both AUSM+-up and TSLAU 

schemes while the sharpest expansion is captured using TSLAU. Figure 4-2(a), which shows the 

volume fraction profile, illustrates the ability of each scheme to treat the contact discontinuity 

(located at 𝑥 = 5). The original AUSM+ has a strong oscillation near the contact. AUSM+-up and 

TSLAU schemes both capture the contact with less oscillation. However, due to the lower 

dissipation in TSLAU compared to AUSM+-up, small oscillations are still observed. In summary, 

the TSLAU scheme optimizes the dissipation such that it captures shocks and expansions with less 

dissipation while still minimizing the oscillation at contact discontinuities.   

 

4.9 Conclusion 

In this paper, the recent SLAU scheme is extended to solve the two-fluid model equations, 

where the stiffened gas model describes the liquid phase. This scheme has a simple compressible 

numerical flux function from the AUSM-family for all speeds in each phase and involves no 

tunable parameters (e.g., cut-off Mach number or reference velocity) as opposed to the previous 

schemes. Therefore, it is robust, and efficient for computations over a wide range of Mach numbers 

for each phase. This scheme, a two-phase low-dissipation AUSM or TSLAU scheme, is simpler 
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than the existing all-speed two-fluid AUSM schemes and can easily be coded and extended for 

complex physics and geometries. A well-known two-fluid benchmark problem is successfully 

tested, showing the accuracy of the scheme. The results are compared against AUSM+ and 

AUSM+-up two-phase schemes.  The comparison shows that the TSLAU scheme minimizes 

overshoots and undershoots near shocks and expansions. Overall the scheme optimizes the 

numerical dissipation such that shocks and expansion waves are captured more sharply while 

minimizing oscillations at contact discontinuities. 
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5. CHAPTER 5.   CONCLUSION 

 

The goal of this work is numerical investigation of shock-particle interaction in both 

compressible gas-solid and gas-liquid flow regime. Owing to complex dynamics and the 

uncharacteristic flow behavior involved in these problems, this work first focused on limiting the 

amount of modeling by fully resolving the flow features, through solving the full Navier-Stokes 

equations. Due to the multiscale nature of these interactions, the numerical solver is developed in 

the Parallel Adaptive Wavelet Collocation Method framework (PAWCM). The PAWCM is a 

multiscale framework that uses wavelets to dynamically adapt the grid used, to represent the 

solution, which minimizes the overall computational cost and allows larger simulations to be 

performed. This framework provides the capability to generate highly resolved grids only on the 

necessary regions of the fluid.  

In the gas-solid regime, a characteristic based Immersed boundary method suitable for 

compressible flow is utilized to impose the no-slip and adiabatic condition on the solid particles. 

The gas solid solver is validated against experimental data, for the shock interaction with a single 

particle. Then it is employed to replicate shock-particle cloud interaction in the multiphase shock 

tube experiment of Wagnar et al. [1] to reveal flow physics involved in the particle cloud and the 

wake behind that. Similar to the Euler’s simulation in Regele et al. [2], we observed a high 

unsteady effect and large velocity fluctuations, however the magnitude of the velocity fluctuations 

are more realistic due to the presence of physical viscosity in our Navier-Stokes solver. The present 

work quantifies the flow unsteadiness and velocity fluctuations to answer the question of “why is 

the unsteadiness large and why are the velocity fluctuations in the same order as the mean velocity 

field”. The quantification of the shock-particle cloud interaction is performed against a gradually 
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induced flow over the particle cloud, to remove the impulsive effect of the shock and understand 

how much the impulsive effect contributes to the unsteadiness and the fluctuating field statistics. 

The numerical results on evolution of complex wave system, dilatation effect and local supersonic 

zones and the interaction points with the vortical structures reveal interesting information about 

the strong unsteadiness observed. The vorticity equation budget is performed to analyze the 

sources of unsteadiness. A detailed analysis of the velocity fluctuation and kinetic energy in the 

fluctuating motion is performed, for both cases, to ascertain the importance of the velocity 

fluctuations that arise from the strong unsteadiness in the shock induced case. 

In the next step, a compressible gas-liquid flow solver is developed for the PAWCM 

framework to account for the deformation and advection of droplet interface, as well as surface 

tension effect, during the shock-droplet interaction. An interface capturing scheme, based on the 

five-equation model is developed to capture interface dynamics. An interface compression scheme 

is also developed for PAWCM to maintain the immiscibility condition and counter the interface 

smearing due to the numerical diffusion. The surface tension is implemented based on the 

continuum surface force. One dimensional test problems showed the ability of the flow solver to 

resolve both shock and interface over just a few points with minimal spurious oscillation across 

the interface. 2D test problems showed the ability of the code in shape preservation and predicting 

accurate interface dynamics in presence and absence of surface tension effect. 

Finally, to further investigate the problem of multiphase shock tube and attempt to model the 

flow behavior based on the PR-DNS results, a two-phase shock capturing scheme is developed to 

solve the six equation, two-fluid model. The scheme is developed based on the extension of a 

Simple Low dissipation AUSM (SLAU) scheme and is called a Two-phase SLAU (TSLAU) 

scheme. TSLAU is free from the tunable parameters, and in comparison with the AUSM+ and 
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AUSM+-up two-phase schemes it minimizes overshoots and undershoots near shocks and 

expansions. Overall the scheme optimizes the numerical dissipation such that shocks and 

expansion waves are captured more sharply while minimizing oscillations at contact 

discontinuities. 
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